Title page for ETD etd-12012010-190610


Type of Document Dissertation
Author Ren, Dakai
Author's Email Address rend06@vt.edu
URN etd-12012010-190610
Title Moisture-Cure Polyurethane Wood Adhesives: Wood/Adhesive Interactions and Weather Durability
Degree PhD
Department Macromolecular Science and Engineering
Advisory Committee
Advisor Name Title
Frazier, Charles E. Committee Chair
Edgar, Kevin J. Committee Member
Long, Timothy E. Committee Member
Roman, Maren Committee Member
Wilkes, Garth L. Committee Member
Keywords
  • moisture-cure polyurethane
  • weather durability
  • wood/adhesive interaction
  • wood adhesion
Date of Defense 2010-11-18
Availability unrestricted
Abstract
This project addresses two main subjects of moisture-cure polyurethane (PUR) wood adhesives: wood/PUR interactions and structure-property behavior emphasizing on weather durability. For these purposes, one simplified model PUR (MPUR) and three more commercially significant PURs (CPURs) with different hard segment contents were prepared. Separately, an early side project involved the synthesis of a 13C and 15N double-labeled polymeric methylenebis(phenylisocyanate) (pMDI) resin; this was used for the solid-state NMR characterization of isocyanate cure chemistry in wood bondline.

MPUR and a CPUR were employed to investigate whether wood/adhesive interactions influence PUR properties. Wood interactions significantly altered PUR hard/soft domain size distribution (atomic force microscopy, AFM), thermal transition temperatures (dynamic mechanical analyses, DMA), and urethane/urea hydrogen bonds (Fourier transform infrared spectroscopy, FTIR).

The effects of hard segment content on properties of PUR prepolymers, and cured PURs (films and wood composites) were studied. Hard segment content largely influenced the PURs’ molecular weights, viscosity, penetration, thermal transitions, and hard segment hydrogen bonds, but only slightly altered the dry (unweathered) bondline toughness.

Three accelerated weathering procedures were developed to evaluate CPUR bondline weather durability through mode-I fracture testing. Both hard segment content and weathering conditions were found to significantly influence the bondline weather durability. Among these weathering procedures, only one (VPSS) was able to effectively distinguish weather durability of PUR adhesives, and therefore it was selected for detailed structure-weather durability studies. PUR weather durability was found to correlate with its moisture sensitivity and hard segment softening temperature; both were provided by water-submersion DMA. Much attention was directed to the investigation of weather-induced PUR molecular changes. FTIR studies provided evidences of post-cure, hydrolytic degradation, and variation of urethane/urea hydrogen bonds. DMA presented weathering effects on PUR thermal properties. Special efforts have been made to correlate these analytical results with PUR weather durability.

A 13C and 15N double-labeled pMDI resin was synthesized and used for solid-state NMR characterization of isocyanate cure chemistry in wood bondline, particularly to detect the evidence of urethane formation. Rotational echo double resonance (REDOR) NMR clearly revealed the formation of urethane linkages, but largely overestimated their content.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Ren_D_D_2010.pdf 7.79 Mb 00:36:04 00:18:33 00:16:14 00:08:07 00:00:41

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.