Title page for ETD etd-12032009-103453


Type of Document Master's Thesis
Author Prabhakar, Sandesh
Author's Email Address sandeshp@vt.edu
URN etd-12032009-103453
Title Algorithms and Low Cost Architectures for Trace Buffer-Based Silicon Debug
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Hsiao, Michael S. Committee Chair
Schaumont, Patrick Robert Committee Member
Wyatt, Christopher L. Committee Member
Keywords
  • Silicon Debug
  • Logic Implications
  • Trace selection
  • State Restoration
  • Trace Compression
Date of Defense 2009-12-01
Availability unrestricted
Abstract
An effective silicon debug technique uses a trace buffer to monitor and capture a portion of the circuit response during its functional, post-silicon operation. Due to the limited space of the available trace buffer, selection of the critical trace signals plays an important role in both minimizing the number of signals traced and maximizing the observability/restorability of other untraced signals during post-silicon validation. In this thesis, a new method is proposed for trace buffer signal selection for the purpose of post-silicon debug. The selection is performed by favoring those signals with the most number of implications that are not implied by other signals. Then, based on the values of the traced signals during silicon debug, an algorithm which uses a SAT-based multi-node implication engine is introduced to restore the values of untraced signals across multiple time-frames. A new multiplexer-based trace signal interconnection scheme and a new heuristic for trace signal selection based on implication-based correlation are also described. By this approach, we can effectively trace twice as many signals with the same trace buffer width. A SAT-based greedy heuristic is also proposed to prune the selected trace signal list further to take into account those multi-node implications. A state restoration algorithm is developed for the multiplexer-based trace signal interconnection scheme. Experimental results show that the proposed approaches select the trace signals effectively, giving a high restoration percentage compared with other techniques. We finally propose a lossless compression technique to increase the capacity of the trace buffer. We propose real-time compression of the trace data using Frequency-Directed Run-Length (FDR) code. In addition, we also propose source transformation functions, namely difference vector computation, efficient ordering of trace flip-flops and alternate vector reversal that reduces the entropy of the trace data, making them more amenable for compression. The order of the trace flip-flops is computed off-chip using a probabilistic algorithm. The difference vector computation and alternate vector reversal are implemented on-chip and incurs negligible hardware overhead. Experimental results for sequential benchmark circuits shows that this method gives a better compression percentage compared to dictionary-based techniques and yields up to 3X improvement in the diagnostic capability. We also observe that the area overhead of the proposed approach is less compared to dictionary-based compression techniques.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Prabhakar_S_T_2009.pdf 650.05 Kb 00:03:00 00:01:32 00:01:21 00:00:40 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.