Title page for ETD etd-12052009-020254

Type of Document Master's Thesis
Author Calkins, Joseph M.
URN etd-12052009-020254
Title Real-time compensation of static deflections in robotic manipulators
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Reinholtz, Charles F. Committee Co-Chair
Salerno, Robert J. Committee Co-Chair
Abbott, A. Lynn Committee Member
  • Robots
Date of Defense 1994-12-09
Availability unrestricted
The focus of this work is the real-time prediction and compensation of static deflections in robotic manipulator arms. A general manipulator deflection model is developed based on static beam theory and robot kinematics. An optimization technique is proposed to determine the stiffness of the manipulator components using end-effector deflection measurements. Strategies for incorporating this modeling approach into a manipulator controller are also presented along with the results of a successful application of this research.

This work is an extension of previous manipulator deflection research. Multiple pairs of torsional stiffness elements and beam elements are used to model complex link and joint geometries whereas previous models only used a single beam per manipulator link. In addition, the modeling algorithms and stiffness characterization methods are general and may be applied directly to any serial manipulator. Also, the optimization techniques used to characterize a manipulator's stiffness provide a more accurate and flexible approach than previous analytical methods.

The deflection model was successfully tested using a nuclear steam generator service manipulator. Since this manipulator is considerably more flexible than common industrial robots, it serves as a near worst-case test for deflection modeling. The endeffector was found to deflect as much as 1.5 inches due to the weight of the links and joints. The deflection model was able to compensate for 94% of the end-effector deflection, allowing the manipulator to perform tasks requiring a positioning accuracy of 0.09 inches.

The algorithms for flexible forward and inverse kinematics as well as trajectory generation were incorporated directly into the manipulator controller code. These modules were capable of running in real-time with little computational expense.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  LD5655.V855_1994.C355.pdf 2.66 Mb 00:12:20 00:06:20 00:05:33 00:02:46 00:00:14
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.