Title page for ETD etd-12142007-105238


Type of Document Master's Thesis
Author Cacciola, Stephen J
URN etd-12142007-105238
Title Fusion of Laser Range-Finding and Computer Vision Data for Traffic Detection by Autonomous Vehicles
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Reinholtz, Charles F. Committee Chair
Hong, Dennis W. Committee Member
Wicks, Alfred L. Committee Member
Keywords
  • Autonomous Vehicles
  • Mobile Robotics
  • Sensor Fusion
  • Vision Processing
Date of Defense 2007-12-03
Availability unrestricted
Abstract
The DARPA Challenges were created in response to a Congressional and Department of Defense (DoD) mandate that one-third of US operational ground combat vehicles be unmanned by the year 2015. The Urban Challenge is the latest competition that tasks industry, academia, and inventors with designing an autonomous vehicle that can safely operate in an urban environment.

A basic and important capability needed in a successful competition vehicle is the ability to detect and classify objects. The most important objects to classify are other vehicles on the road. Navigating traffic, which includes other autonomous vehicles, is critical in the obstacle avoidance and decision making processes. This thesis provides an overview of the algorithms and software designed to detect and locate these vehicles. By combining the individual strengths of laser range-finding and vision processing, the two sensors are able to more accurately detect and locate vehicles than either sensor acting alone.

The range-finding module uses the built-in object detection capabilities of IBEO Alasca laser rangefinders to detect the location, size, and velocity of nearby objects. The Alasca units are designed for automotive use, and so they alone are able to identify nearby obstacles as vehicles with a high level of certainty. After some basic filtering, an object detected by the Alasca scanner is given an initial classification based on its location, size, and velocity. The vision module uses the location of these objects as determined by the ranger finder to extract regions of interest from large images through perspective transformation. These regions of the image are then examined for distinct characteristics common to all vehicles such as tail lights and tires. Checking multiple characteristics helps reduce the number of false-negative detections. Since the entire image is never processed, the image size and resolution can be maximized to ensure the characteristics are as clear as possible. The existence of these characteristics is then used to modify the certainty level from the IBEO and determine if a given object is a vehicle.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Cacciola_thesis_2.0.pdf 2.59 Mb 00:12:00 00:06:10 00:05:24 00:02:42 00:00:13

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.