Title page for ETD etd-12192010-114500


Type of Document Master's Thesis
Author Bernardo, Jesse Raymond
URN etd-12192010-114500
Title Indirect Tissue Scaffold Fabrication via Additive Manufacturing and Biomimetic Mineralization
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Williams, Christopher B. Committee Chair
Bohn, Jan Helge Committee Member
Goldstein, Aaron S. Committee Member
Morgan, Abby W. Committee Member
Keywords
  • Fused Deposition Modeling
  • Mineralization
  • Additive Manufacturing
  • Tissue Scaffold
Date of Defense 2010-12-09
Availability unrestricted
Abstract
Unlike traditional stochastic scaffold fabrication techniques, additive manufacturing (AM) can be used to create tissue-specific three-dimensional scaffolds with controlled porosity and pore geometry (meso-structure). However, due to the relatively few biocompatible materials available for processing in AM machines, direct fabrication of tissue scaffolds is limited. To alleviate material limitations and improve feature resolution, a new indirect scaffold fabrication method is developed.

A four step fabrication process is explored: Fused Deposition Modeling (FDM) is used to fabricate scaffold patterns of varied pore size and geometry. Next, scaffold patterns are surface treated, and then mineralized via simulated body fluid (SBF); forming a bone-like ceramic throughout the scaffold pattern. Finally, mineralized patterns are heat treated to pyrolyze the pattern and sinter the minerals.

Two scaffold meso-structures are tested: “tube” and “backfill.” Two pattern materials are tested [acrylonitrile butadiene styrene (ABS) and investment cast wax (ICW)] to determine which material is the most appropriate for mineralization and sintering. Mineralization is improved through plasma surface treatment and dynamic flow conditions. Appropriate burnout and sintering temperatures to remove pattern material are determined experimentally.

While the “tube scaffolds” were found to fail structurally, “backfill scaffolds” were successfully created using the new fabrication process. The “backfill scaffold” meso-structure had wall thicknesses of 470 – 530 µm and internal channel diameters of 280 – 340 µm, which is in the range of appropriate pore size for bone tissue engineering. “Backfill scaffolds” alleviated material limitations, and had improved feature resolution compared to current indirect scaffold fabrication processes.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Bernardo_JR_T_2010.pdf 20.60 Mb 01:35:22 00:49:02 00:42:55 00:21:27 00:01:49

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.