Title page for ETD etd-21398-141021


Type of Document Dissertation
Author Eure, Kenneth W. II
Author's Email Address k.w.eure@larc.nasa.gov
URN etd-21398-141021
Title Adaptive Predictive Feedback Techniques for Vibration Control
Degree PhD
Department Electrical Engineering
Advisory Committee
Advisor Name Title
Baumann, William T. Committee Chair
Fuller, Christopher R. Committee Member
Juang, Jer-Nan Committee Member
McDaniels, Carl O. Committee Member
Silcox, Richard J. Committee Member
VanLandingham, Hugh F. Committee Member
Keywords
  • Feedback
  • Adaptive
  • Real Time
  • Broadband
Date of Defense 1998-02-03
Availability unrestricted
Abstract
In this dissertation, adaptive predictive feedback control is used to suppress plate vibrations. The adaptive predictive controller consists of an on-line identification technique coupled with a control scheme. Various system identification techniques are investigated and implemented including batch least squares, projection algorithm, and recursive least squares. The control algorithms used include Generalized Predictive Control and Deadbeat Predictive Control. This dissertation combines system identification and control to regulate broadband disturbances in modally-dense structures. As it is assumed that the system to be regulated is unknown or time varying, the control schemes presented in this work have the ability to identify and regulate a plant with only an initial estimate of the system order. In addition, theoretical development and experimental results presented in this work confirm the fact that an adaptive controller operating in the presence of disturbances will automatically incorporate an internal noise model of the disturbance perturbing the plant if the system model order is chosen sufficiently large. It is also shown that the adaptive controller has the ability to track changes in the disturbance spectrum as well as track a time varying plant under certain conditions. This work presents a broadband multi-input multi-output control scheme which utilizes both the DSP processor and the PC processor in order to handle the computational demand of broadband regulation of a modally-dense plant. Also, the system identification technique and the control algorithm may be combined to produce a direct adaptive control scheme which estimates the control parameters directly from input and output data. Experimental results for various control techniques are presented using an acoustic plant, a rectangular plate with clamped boundary conditions, and a time varying plate.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Etd.pdf 1.30 Mb 00:06:02 00:03:06 00:02:43 00:01:21 00:00:06

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.