Title page for ETD etd-23349150973140


Type of Document Dissertation
Author Cameron, Rick A.
URN etd-23349150973140
Title Fixed-Point Implementation of a Multistage Receiver
Degree PhD
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Kobza, John E.
Rappaport, Theodore S.
Reed, Jeffrey Hugh
VanLandingham, Hugh F.
Woerner, Brain D. Committee Chair
Keywords
  • interference cancellation
  • quantization
  • synchronization
  • CDMA
Date of Defense 1997-01-13
Availability unrestricted
Abstract
This dissertation provides a study of synchronization and quantization issues in implementing a multistage receiver in fixed-point Digital Signal Processing (DSP) hardware. Current multistage receiver analysis has neglected the effects of synchronization and quantization; however, these effects can degrade system performance and therefore decrease overall system capacity. The first objective is to analyze and simulate various effects of synchronization in a multistage system. These effects include the effect of unsynchronized users on the bit error rate (BER) of synchronized users, and determining whether interference cancellation can be used to improve the synchronization time. This information is used to determine whether synchronization will limit overall system capacity. Both analytical and simulation techniques are presented. The second objective is to study the effects of quantization on the performance of the multistage receiver. A DSP implementation of a practical receiver will require a DSP chip with a fewer number of bits than the computer chips typically used in simulation of receiver performance. Therefore, the DSP implementation performs poorer than the simulation results predict. In addition, a fixed-point implementation is often favored over a floating-point implementation, due to the high processing requirements necessitated by the high chip rate. This further degrades performance because of the limited dynamic range available with fixed-point arithmetic. The performance of the receiver using a fixed-point implementation is analyzed and simulated.

We also relate these topics to other important issues in the hardware implementation of multistage receivers, including the effects of frequency offsets at the receiver and developing a multiuser air protocol interface (API). This dissertation represents a contribution to the ongoing hardware development effort in multistage receivers at Virginia Tech.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  cameron.pdf 2.53 Mb 00:11:41 00:06:00 00:05:15 00:02:37 00:00:13

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.