Title page for ETD etd-52298-185948


Type of Document Master's Thesis
Author Zhou, Lucy Ying Jr.
Author's Email Address yizhou2@vt.edu
URN etd-52298-185948
Title Quantitative Analysis of Additives in Low Density Polyethylene Using On-line Supercritical Fluid Extraction /Supercritical Fluid Chromatography
Degree Master of Science
Department Chemistry
Advisory Committee
Advisor Name Title
Taylor, Larry T. Committee Chair
Dorn, Harry C. Committee Member
McNair, Harold M. Committee Member
Keywords
  • Supercritical
  • Extraction
  • Chromatography
  • On-line
  • Polymer additives
  • HPLC
Date of Defense 1998-06-15
Availability unrestricted
Abstract

Polymer additives exemplify many classes of compounds which possess a wide variety of chemical (i.e., phenols, amides, esters) and physical (i.e., volatility, solubility) properties. They are incorporated into polyolefins and other such polymeric materials for a number reasons: (a) to prevent degradation by ultraviolet light, heat, and oxygen; (b) to aid in the processing of the polymer; and (c) to modify the physical properties of the polymer. Since the purity and amount of additive can affect polymer properties, it is very important to characterize and quantify additives in polymer products. Traditional liquid solvent/polymer extraction methods, which involve dissolution/precipitation, are time-consuming, uneconomical, and the recoveries are significantly lower than 90%.

In recent years, analysis with supercritical fluids (SFs) has emerged as an alternative analytical technique because SFs afford higher diffusivity and lower viscosity. In this research, an on-line Supercritical Fluid Extraction (SFE)/Supercritical Fluid Chromatography (SFC) system was assembled to provide efficient extraction and separation of polymer additives with quantitative results. The effects of various SFE/SFC parameters, such as trapping temperature, injection temperature, extraction pressure and temperature, dynamic extraction time, and fluid flow rate on extraction and separation efficiencies of different additive standards (i.e., BHT, BHEB, Isonox 129, Irganox 1076 and Irganox 1010) were investigated. Optimized conditions were employed to quantitatively extract additives from LDPE. Identification of additives was performed by comparing the retention time with each additive standard. Results obtained from on-line SFE/SFC were compared to results from off-line SFE/High Performance Liquid Chromatography (HPLC) and off-line Enhanced Solvent Extraction (ESE)/HPLC.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Master.PDF 395.57 Kb 00:01:49 00:00:56 00:00:49 00:00:24 00:00:02

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.