Title page for ETD etd-72197-23122

Type of Document Dissertation
Author Mollenhauer, David Hilton
Author's Email Address dmollenh@vt.edu
URN etd-72197-23122
Title Interlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire Interferometry
Degree PhD
Department Engineering Science and Mechanics
Advisory Committee
Advisor Name Title
Kohler, Werner E.
Kriz, Ronald D.
McCoy, James R.
Post, Daniel Committee Co-Chair
Reifsnider, Kenneth L. Committee Co-Chair
  • moire interferometry
  • fiber reinforced composites
  • open holes
  • experimental testing
  • strain measurement
  • phase shifting
  • variational methods
Date of Defense 1997-08-20
Availability unrestricted
The deformation on cylindrical surfaces of holes in tensile loaded laminated composite specimens was measured using new moire interferometry techniques. These new techniques were developed and evaluated using a 7075-T6 aluminum control specimen. Grating replication techniques were developed for replicating high quality diffraction gratings onto the cylindrical surfaces of holes. Replicas of the cylindrical specimen gratings (undeformed and deformed) were fabricated onto circular steel sectors. Narrow angular regions of these sector gratings were directly evaluated in a moire interferometer. This moire interferometry approach eliminated potential sources of error associated with other moire interferometry approaches.

Two composite tensile specimens, fabricated from IM7/5250-4 pre-preg with ply layups of [04/904]3s and [+302/-302/904]3s, were examined using the newly developed moire interferometry techniques. Circumferential and thickness direction displacement fringe patterns (each 3 degrees wide) were assembled into 90 degrees wide mosaics around the hole periphery for both composite specimens. Distributions of strain were calculated with high confidence on a sub-ply basis at select angular locations. Measured strain behavior was complex and displayed ply-by-ply trends. Large ply related variations in the circumferential strain were observed at certain angular locations around the periphery of the holes in both composites. Extremely large ply-by-ply variations of the shear strain were also documented in both composites. Peak values of shear strain approached 30 times the applied far-field axial strain. Post-loaded viscoelastic shearing strains were recorded that were associated with the regions of large load-induced shearing strains. Large ply-grouping related variations in the thickness direction strain were observed in the [+302/-302/904]3s specimen. An important large-scale trend was observed where the thickness direction strain tended to be more tensile near the outside faces of the laminate than near the mid-ply region. The measured strains were compared with the three-dimensional analysis technique known as Spline Variational Elastic Laminate Technology (SVELT), resulting in a very close match and corroborating the usefulness of SVELT.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  ETD.PDF 6.37 Mb 00:29:29 00:15:09 00:13:16 00:06:38 00:00:33

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.