Title page for ETD etd-81498-172716


Type of Document Master's Thesis
Author Lian, Michelle K.
Author's Email Address mlian@vt.edu
URN etd-81498-172716
Title Study of Durability of Epoxy Bonded Joints in Aqueous Environments
Degree Master of Science
Department Materials Science and Engineering
Advisory Committee
Advisor Name Title
Love, Brian J. Committee Chair
Grant, John Wallace Committee Member
Kander, Ronald G. Committee Member
Keiser, James R. Committee Member
Keywords
  • three-point flexure
  • steel
  • epoxy
  • underwater repair
Date of Defense 1998-08-04
Availability unrestricted
Abstract
There are instances where efficiency and safety may be compromised as a result of wear and tear of fluid transporting pipe systems. Consequently, it is sometimes necessary to shut down the entire operation to fix the problem. Thus, it is worth evaluating other methods that can repair the damage for a temporary period without shutting down the operation while a new pipe is being constructed. The objective was to evaluate the durability of the epoxy bonded steel in aqueous environments that might be the conditions of such a repair. EPON(registered mark)828 was chosen as the epoxy resin, and dicyandiamide and polyamidoamine were two types of curing agent evaluated in this study. The epoxy bonded steels were exposed in either distilled water or 3.4% NaCl solution for various time periods. The mechanical strengths of the bonded joints were evaluated using a three-point flexure test. The neat epoxy samples were also aged under the same conditions, and three-point flexure test and dynamic mechanical analysis (DMA) were performed to evaluate their mechanical properties. The moisture uptake of the neat epoxy increased with exposure time, and the bending modulus of the neat epoxy decreased with aging time and moisture uptake. It was found that the interfacial shear strength decreased with aging time for both epoxy bonded systems. Scanning Electron Microscopy (SEM), optical microscopy, and X-ray Photoelectron Spectroscopy (XPS) were used to determine the locus of failure of the bonded joints. It was concluded that failure occurred cohesively within the oxide layer if oxides were present on the substrate surface prior to the bonding procedure.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  etd.pdf 849.48 Kb 00:03:55 00:02:01 00:01:46 00:00:53 00:00:04

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.