Scholarly
    Communications Project


Document Type:Master's Thesis
Name:James B. Daniel II
Email address:jadanie2@vt.edu
URN:1997/00517
Title:Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System
Degree:Master of Science
Department:Crop and Soil Environmental Sciences
Committee Chair: Dr. A. Ozzie Abaye
Chair's email:cotton@vt.edu
Committee Members:Dr. Marcus M. Alley
Dr. James C. Baker
Keywords:cotton, no-till, cover crop, biomass, ground cover, soil moisture, yield, quality
Date of defense:December 1, 1997
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.

Abstract:

Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and quality. Six cover crop treatments, crimson clover (Trifolium incarnatum L.), hairy vetch (Vicia vilosa L.), hairy vetch and rye (Secale cereale L.), rye, wheat (Triticum aestivum L. amend. Thell.), and white lupin (Lupinus albus L.), and two tillage systems (conventional and no-till) were arranged in a split-plot design with four replications. Cover crop biomass production depended on climate conditions. Ground cover percent and N assimilation by cover crops were directly correlated with the amount of biomass produced within cover crop treatments. Within a range of near average winter temperatures, all cover crops except lupin provided enough ground cover to comply with federal conservation tillage standards. More ground cover remained on the soil surface further into the cotton growing season following the small grain treatments compared to the legume cover crop treatments. Soil moisture was higher (P < 0.05) under no-till compared to conventional tillage during the periods of drought in 1997. Tillage system had no effect on cotton yield and quality in 1995 and 1996. High cover crop biomass production coupled with an extended cotton growing season in 1995 resulted in higher lint yield for cotton grown following the hairy vetch + rye treatment compared with cotton grown following the wheat treatment. High heat unit accumulation in October 1995 led to the over maturity of cotton fiber and high micronaire values for cotton grown following all cover crop treatments. The high micronaire values (5.0 - 5.2) for cotton grown in all cover crop treatments except hairy vetch + rye (4.9), resulted in a market price deduction of 1.4 cents per kilogram of lint in 1995. All cover crops used in this experiment, with the exception of lupin, provided enough ground cover within a range of average winter temperatures to meet federal conservation requirements. The winter annual cover crops in a no-till cotton production system provided greater soil moisture conservation during periods of drought, and produced cotton yields and quality comparable to conventional tillage.

List of Attached Files

FINAL.PDF

At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.