Scholarly Communications Project

<ETD> Submission Form - Cataloger

Heath Allan Demaree

Email address:

Analysis of Quantitative Electroencephalographic and Cardiovascular Responses to Stress Among Low- and High-Hostiles

Date of defense:
April 16, 1997

Document Type:
PhD Dissertation

Doctor of Philosophy



This experiment was primarily designed to identify higher cortical correlates of cardiovascular arousal. Low- and high-hostile, right-handed, undergraduate men were identified using the Cook Medley Hostility Scale (CMHS). All participants (N = 30) completed the cold pressor paradigm. Cardiovascular (heart rate, systolic blood pressure, and diastolic blood pressure) and electroencephalographic (beta magnitude) data were collected before and after the stressor. As predicted, high-hostiles showed greater increases of heart rate and systolic blood pressure to the stressor relative to low-hostiles. The primary findings of this research include significantly greater beta magnitude recorded by the T3, relative to F7, electrode among low-hostiles. This may suggest that low-hostiles experience left-frontal disinhibition of left-temporal regions, thereby strengthening cardiovascular regulation during the cold-pressor stress. In addition, irrespective of condition, high-hostiles evidenced significantly greater beta magnitude at regions corresponding to the F7 and F8 electrodes. This perhaps suggests that high-hostiles have a relative inability to increase their rostral modulation of posterior systems related to cardiovascular reactivity/regulation. Low- and high-hostiles did not, however, evidence reliable differences in their ability to monitor cardiovascular arousal to the cold-pressor stress. Findings are discussed in terms of a systems approach, and pertinent future research is recommended. This research did not support the prominent neuropsychological theories of cardiovascular regulation proposed by Heilman et al. (1993) and Tucker and Williamson (1984). Rather, the results may suggest that right- and left-cerebral mechanisms may be primarily responsible for sympathetic and parasympathetic cardiovascular arousal, respectively.

Aggression, Cerebral Laterality, Arousal, Cerebral Asymmetry, Cardiovascular Disease, Heart Rate, Blood Pressure

In 3 months.

Public URL:

List of attached files

File NameSize (Bytes)
HADEMAREE.pdf242,713 Bytes

Date item approved:

Archiving fee received.
UMI fee received/NA.

[ETD main page] [Search ETDs][] [SCP home page] [library home page]

Send Suggestions or Comments to