Scholarly
    Communications Project


Document Type:Master's Thesis
Name:Mary Gilchrist Lusk
Email address:mgilchri@vt.edu
URN:1998/00614
Title:Sulfate Dynamics and Base Cation Release in a High Elevation Appalachian Forest Soil
Degree:Master of Science
Department:Crop and Soil Environmental Science
Committee Chair: Dr. Lucian Zelazny
Chair's email:zelazny@vt.edu
Committee Members:James Burger
W. Lee Daniels
Keywords:sulfate, acid deposition, base cations, forest soil
Date of defense:April 30, 1998
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.

Abstract:

Two soils from the Fernow Experimental Forest near Parsons, West Virginia were characterized and evaluated in terms of their susceptibility to enhanced soil acidification via acidic atmospheric inputs. After initial physical, chemical, and mineralogical characterization, the soils were analyzed for their ability to adsorb and retain sulfate (SO42-) through a series of batch adsorption and desorption experiments. Reconstructed soil profiles were then subjected to water leaching as the preliminary step to a base release study in which each soil will be placed under simulated acid rain and evaluated for base cation release and subsequent changes in soil chemistry. Experiments with SO42- adsorption and desorption divide the soils into two categories: (i) shallow surface horizons with high organic matter and little Fe oxide content which had little ability to adsorb additional SO42- and low capacity to retain SO42-; and (ii) deeper subsurface soils with low organic matter and high Fe oxide content which could adsorb SO42- at solution concentrations above 0.5 mmol/L. All soil horizons desorbed SO42- and had no ability for additional adsorption at solution concentrations below 0.5 mmol/L, which implies that the site may be saturated with respect to natural conditions. Initial mass (IM) and Langmiur modeling were used to illustrate SO42- dynamics and make correlations with soil physical, chemical, and mineralogical properties. Fe oxides and Al-saturated organic matter were shown to be the preferential sites for SO42- adsorption but may be already saturated or very near saturation. Preliminary results from the base release study indicate that the two soils are dominated by different chemical processes and hence release ions into soil solution at different rates. Ion release is shown to be a function of both reactions on the exchange complex and the dissolution of mineral components.

List of Attached Files

Mthesis.pdf abstract.doc

At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.