Scholarly
    Communications Project


Document Type:Dissertation
Name:Wei Li
Email address:weli3@vt.edu
URN:1998/00705
Title:Kinetics and Mechanism of Ozone Decomposition and Oxidation of Ethanol on Manganese Oxide Catalysts
Degree:DOCTOR OF PHILOSOPHY
Department:Materials Engineering and Science
Committee Chair: S. Ted Oyama
Chair's email:oyama@vt.edu
Committee Members:Robert J. Bodnar
David F. Cox
Seshu Desu
Gerald V. Gibbs
Joseph S. Merola
Keywords:Ozone, Kinetics, Mechanism, Decomposition, Ethanol Oxidation, Raman Spectroscopy, Manganese Oxides
Date of defense:May 28, 1998
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.

Abstract:

Understanding and establishing reaction mechanisms is an important area in heterogeneous catalysis. This dissertation describes the use of in situ laser Raman spectroscopy combined with kinetic measurements and dynamic experiments to determine the mechanism of catalytic reactions. Two cases involving ozone reactions on manganese oxide catalysts were treated. Manganese oxide was chosen because it is the most active of the transition metal oxides for ozone decomposition and because it is a well-known catalyst for complete oxidation reactions. The first case studied was that of the ozone decomposition reaction on a supported manganese oxide catalyst. An adsorbed species with a Raman signal at 884 cm-1 was observed and assigned to a peroxide species based on results of in situ Raman spectroscopy, 18O isotopic substitution measurements, and ab initio MO calculations. The reaction pathway of ozone decomposition was elucidated with carefully designed isotopic experiments. The reaction sequence was found to involve two irreversible, kinetically significant steps: 1) dissociative adsorption of ozone to form a peroxide species and an atomic oxygen species, and 2) desorption of the peroxide intermediate. The kinetic behavior of the peroxide species and the overall decomposition reaction were investigated to test the validity of the proposed sequence. The transient kinetics were found to be consistent with the steady state kinetics, and both were well represented by the two-step sequence, indicating that the proposed reaction sequence accurately described the mechanism of decomposition. The surface was found to be non-uniform, with activation energies that varied linearly with coverage. At zero surface coverage the activation energy for ozone adsorption was found to be 6.2 kJ mol-1, while that for desorption of the peroxide species was found to be 69.0 kJ mol-1. The second case investigated was that of ethanol oxidation using ozone on alumina and silica supported manganese oxide catalysts. Ethanol was found to react with ozone at lower temperatures than with oxygen, and also with a lower activation energy. The reaction kinetics was found to be well described by a power law equation with the reaction orders on ozone and ethanol being 0.89 and 0.81 respectively. The oxidation reactivity was found to be closely related to that of ozone decomposition, suggesting an important role of ozone decomposition in the reaction mechanism. In situ laser Raman spectroscopic studies showed the existence of adsorbed ethoxide species on the catalyst surface under reaction conditions, however, at a much lower concentration than when oxygen alone was used as the oxidant. Transient experiments provided direct evidence that surface peroxide (an adsorbed species due to ozone) and surface ethoxide (an adsorbed species due to ethanol) reacted with each other on the catalyst surface.

List of Attached Files

etd.pdf

At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.