Scholarly
    Communications Project


Document Type:Dissertation
Name:Daniel James Miller
Email address:djmill@vtvm1.cc.vt.edu
URN:1998/00685
Title:Depositional Environments and Sequence Stratigraphy of Upper Mississippian Strata in the Central Appalachian Basin
Degree:Doctor of Philosophy
Department:Geological Sciences
Committee Chair: Kenneth A. Eriksson
Chair's email:kaeson@vt.edu
Committee Members:Richard K. Bambach
J. Fred Read
Stephen E. Scheckler
Erik P. Kvale
Keywords:Mississippian, Sequence Stratigraphy, Tidal Rhythmites, Paleoclimates
Date of defense:April 30, 1998
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.

Abstract:

The Upper Mississippian Hinton, Princeton, and Bluestone formations of southern West Virginia constitute a wedge of strata that filled the Appalachian basin over a ~7 million year time interval. Seventeen transgressive-regressive sequences comprise the study interval in the basin depocenter. Five sequence types defined by the degree of incision and the thickness/ character of dominant facies include: 1) major incised valley-fill to coastal plain, 2) major incised valley-fill to deltaic, 3) minor incised valley-fill, 4) coastal plain, and 5) marine-dominated sequences.

Transgressive and highstand deposits within several sequences contain tidal rhythmites. The prodeltaic Pride Shale member (Bluestone Formation) preserves a hierarchy of submillimeter-to meter-scale cycles that reflect a spectrum of tidal periodicities. The abbreviated character of these microlaminated rhythmites is suggestive of a distal, subtidal setting wherein neap tides were of insufficient strength to transport sand/ silt. Decimeter-scale bundling of semimonthly cycles is ascribed to seasonal fluvial discharge. Meter-scale, multi-year cycles may reflect the 18.6-year lunar nodal cycle.

Sequence development likely reflects fourth-order (~400 k.y.), Gondwanan glacioeustatic cycles. The character and relative stratigraphic position of paleoclimatic indicators within the sequences suggests a link between eustasy and patterns of global-scale atmospheric circulation. Calcic vertisols and lacustrine carbonates in coastal plain successions are suggestive of seasonal, semiarid climatic conditions during highstand progradation. Leached paleosols and coals that underlie sequence boundaries and occur within estuarine fills are suggestive of humid conditions during late highstand through early transgression. This pattern may reflect fluctuations in monsoonal circulation whereby the latitudinal shift of seasonal moisture was restricted to the equatorial zone during glaciations.

The fourth-order sequences stack into two (2-4 Ma) composite sequences that consist of: 1) a basal retrogradational interval comprised of a major paleovalley-fill sequence overlain by a thick aggradational sequence set made up of fluvial/ coastal plain sequences (TST); 2) a marine interval that demarcates maximum flooding; and 3)(where preserved) a progradational sequence set consisting of minor incised valley-fill sequences (HST). These composite sequences document accommodation change that may reflect global tectono-eustasy.


List of Attached Files

etd1.pdf etd2.pdf

At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.