Scholarly
    Communications Project


Document Type:Dissertation
Name:Karen Rippere Lampe
Email address:krippere@vt.edu
URN:1998/01032
Title:Molecular Systematics of the Entomopathogenic Bacteria Bacillus popilliae, Bacillus lentimorbus, and Bacillus sphaericus
Degree:Doctor of Philosophy
Department:Biology
Committee Chair: Allan A. Yousten
Chair's email:yousten@vt.edu
Committee Members:Noel R. Krieg
Khidir W. Hilu
Eric A. Wong
David L. Popham
Keywords:Bacillus popilliae, Bacillus lentimorbus, Bacillus sphaericus, DNA reassociation, RAPD, vancomycin resistance
Date of defense:September 11, 1998
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.

Abstract:

Bacillus popilliae and B. lentimorbus, causative agents of milky disease in Japanese beetles and related scarab larvae, have been differentiated based upon a small number of phenotypic characteristics, but they have not previously been examined at the molecular level. Thirty-four isolates of these bacteria were examined for DNA similarity. Three distinct but related similarity groups were identified; the first contained strains of B. popilliae, the second contained strains of B. lentimorbus, and the third contained two strains distinct from but related to B. popilliae. Some strains received as B. popilliae were found to be most closely related to B. lentimorbus and some received as B. lentimorbus were found to be most closely related to B. popilliae. Geographically distinct strains of B. popilliae and B. lentimorbus were analyzed using RAPD. Eight decamer primers were tested against nineteen new and seventeen isolates previously described by randomly amplified polymorphic DNA (RAPD) analysis (M. Tran). Of the new isolates, ten were found to be B. popilliae while nine isolates were more related to the B. lentimorbus species. Paraspore formation, believed to be a characteristic unique to B. popilliae, was found to occur among a subgroup of B. lentimorbus strains.

Using a combination of two PCR primer pairs, the cry18Aa1 gene was detected in 31 of 35 B. popilliae isolates and in 1 of 18 B. lentimorbus isolates. When hemolymph smears were examined microscopically, a parasporal crystal was seen in three of the four B. popilliae strains where the PCR primers could not amplify the paraspore gene. The fourth strain was not tested due to the unavailability of infected hemolymph. A paraspore was also detected by microscopic examination in a subgroup of 14 B. lentimorbus strains. In combination, the primer pairs CryBp1 and CryBp2 are effective at detecting the paraspore gene in B. popilliae isolates, but not in the B. lentimorbus isolates. Growth in media supplemented with 2% NaCl was found to be less reliable in distinguishing the species than was vancomycin resistance, the latter present only in B. popilliae.

The basis for vancomycin resistance in all isolates was investigated using a polymerase chain reaction assay designed to amplify the vanB gene in enterococci. An amplicon was identified and sequenced. The amplified portion of the putative ligase gene in B. popilliae had 77% and 68-69% nucleotide identity to the sequences of the vanA gene and the vanB genes, respectively. There was 75% and 69-70% identity between the deduced amino acid sequence of the putative ligase gene in B. popilliae and the deduced amino acid sequence of the vanA gene and the vanB genes, respectively. It has been determined that the vanE gene is located either on a plasmid greater than 16 kb in size or on the chromosome. The gene in B. popilliae may have had an ancestral gene in common with vancomycin resistance genes in enterococci.

Bacillus sphaericus strains isolated on the basis of pathogenicity for mosquito larvae and strains isolated on the basis of a reaction with a B. sphaericus DNA homology group IIA 16S rRNA probe were analyzed for DNA similarity. All of the pathogens belonged to homology group IIA, but this group also contained nonpathogens. It appears inappropriate to designate this homology group a species based solely upon pathogenicity.


List of Attached Files

etd.PDF

At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.