Scholarly
    Communications Project


Document Type:Master's Thesis
Name:Wendy L. Rohrer
Email address:wrohrer@vt.edu
URN:1997/00332
Title:A biosystematic study of the rare plant Paronychia virginica Sprengel (Caryophyllaceae) employing morphometric and allozyme analyses
Degree:Master of Science
Department:Biology
Committee Chair: Duncan M. Porter
Chair's email:duporter@vt.edu
Committee Members:Brenda W. Shirley
Bruce J. Turner
Keywords:disjunct plant populations, species concepts, population genetics
Date of defense:September 18, 1997
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.

Abstract:

A biosystematic study of the rare plant Paronychia virginica Sprengel (Caryophyllaceae) employing morphometric and allozyme analyses

Wendy L. Rohrer

(ABSTRACT)

Paronychia virginica Spreng. (Caryophyllaceae) is a perennial evergreen herb of exposed, relatively xeric habitats. Approximately 10 mid-Appalachian populations remain in Virginia, West Virginia, and Maryland and are disjunct from populations located primarily in Texas, Oklahoma, and Arkansas. A study was conducted to test the hypothesis that eastern and western populations differ significantly and, therefore, represent at least two distinct taxa. Statistical analyses of 8 qualitative and 24 quantitative morphological characters indicated very highly significant (P < 0.001) variation between eastern and western populations of P. virginica. Characters differing most significantly included sepal pubescence, awn length, awn pubescence, awn curvature, length-width ratio of leaves, and shape of leaf apices. Starch gel electrophoresis was performed and six enzyme systems/nine loci (EST-2, EST-3, LAP, MDH-1, MDH-2, PGI, PGM-1, PGM-2, and SKDH) were identified as being consistently scorable and informative. Although gene flow between populations of P. virginica was shown to be restricted (mean FST = 0.353), populations are maintaining relatively high levels of genetic diversity. Genetic variability was quantified for each population and mean values for number of alleles per locus (A), percent loci polymorphic (P), and expected heterozygosity (HEXP) were found to be 1.95, 47.22%, and 0.204, respectively, exceeding those values reported for seed plants, widespread species, and endemic species. Hierarchical F statistics suggest higher levels of genetic variability within individual populations than among populations, regardless of geographic location. All statistically significant (P < 0.05) deviations from Hardy-Weinberg equilibrium indicated a deficiency in heterozygotes at the respective loci. Considering results from both the morphometric and allozyme analyses, the current author suggests recognizing two distinct subspecies, P. virginica subsp. virginica in the eastern U.S. and P. virginica subsp. scoparia in the south-central U.S. Conservation efforts should be focused on the maintenance of existing populations in both eastern and western regions of the U.S. in order to preserve the genetic and evolutionary potential of these taxa.


List of Attached Files

ETD.pdf

At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.