Scholarly
    Communications Project


Document Type:Master's Thesis
Name:Matthew Edward Briggs
Email address:mbriggs@vt.edu
URN:1998/00369
Title:An Introduction to the General Number Field Sieve
Degree:Master of Science
Department:Mathematics
Committee Chair: Dr. Ezra Brown
Chair's email:brown@math.vt.edu
Committee Members:Dr. Martin Day
Dr. Charles Parry
Keywords:Number Field Sieve, Factoring, Cryptography, Algebraic Number Theory
Date of defense:April 17, 1998
Availability:Release the entire work immediately worldwide.

Abstract:

With the proliferation of computers into homes and businesses and the explosive growth rate of the Internet, the ability to conduct secure electronic communications and transactions has become an issue of vital concern. One of the most prominent systems for securing electronic information, known as RSA, relies upon the fact that it is computationally difficult to factor a ``large'' integer into its component prime integers. If an efficient algorithm is developed that can factor any arbitrarily large integer in a ``reasonable'' amount of time, the security value of the RSA system would be nullified. The General Number Field Sieve algorithm is the fastest known method for factoring large integers. Research and development of this algorithm within the past five years has facilitated factorizations of integers that were once speculated to require thousands of years of supercomputer time to accomplish. While this method has many unexplored features that merit further research, the complexity of the algorithm prevents almost anyone but an expert from investigating its behavior. We address this concern by first pulling together much of the background information necessary to understand the concepts that are central in the General Number Field Sieve. These concepts are woven together into a cohesive presentation that details each theory while clearly describing how a particular theory fits into the algorithm. Formal proofs from existing literature are recast and illuminated to clarify their inner-workings and the role they play in the whole process. We also present a complete, detailed example of a factorization achieved with the General Number Field Sieve in order to concretize the concepts that are outlined.

List of Attached Files

etd.pdf


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.