Scholarly Communications Project


Vibration Modeling and Experimental Analysis of a Locomotive Cab

by

James J. Venezia, Jr.

Master's Thesis submitted to the Faculty of the Virginia Tech in partial fulfillment of the requirements for the degree of

Master of Science

in

Department of Mechanical Engineering

Approved

Dr. Mehdi Ahmadian, Chair
Dr. Larry D. Mitchell, Lingan S. Randolph Professor
Dr. Robert L. West, Associate Professor

May 1, 1997
Blacksburg, Virginia


Abstract

This study evaluates noise and vibrations in a heavy freight locomotive cab, and provides several measures for providing more comfort to the crew. A full-scale production cab and sill structure is used to provide the results. The cab is setup in a controlled laboratory environment in a manner similar to the installation on a locomotive. Field measurements are used to emulate actual vibration input to the cab structure. A 16-channel data acquisition system is used to collect both noise and vibration data on various parts of the cab structure and inside the cab. Upon establishing the baseline for laboratory vibration measurements and correlating them with field data, a design of experiment was conducted to evaluate the vibration contribution of various parts of the cab. This showed that the cab floor and cab roof had the largest vibrations. A series of solutions including stiffening the cab floor and damping the cab roof were investigated. The results showed that although such solutions reduce localized vibrations, the overall effect on reducing cab interior noise is minimal. As a more global solution, the cab was isolated from the sill structure through six elastomeric elements mounted at the base of the cab and at the crash post. The mounts at the base were selected such that they support the static weight of the cab, provide a resonance frequency that is below the excitation range, and offer good lateral and longitudinal stability. Two tube-form elastomeric mounts were placed between the cab structure and the crash posts which attach to the front of the sill structure. The test results showed that the soft-mounted cab had significantly lower noise and vibration than the original cab. The vibration levels were reduced 10 to 100 times at certain locations and frequency ranges. The overall noise level was reduced by approximately 6 dBA. In an attempt to provide an estimate of effectiveness of the mounts with different stiffness values, a simulation model was prepared in Matlab. Although the model did not yield accurate results, it resulted in several recommendations for future research work.

Full text (PDF) 25,427 Bytes


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
[ETD main page] [Search ETDs][etd.vt.edu] [SCP home page] [library home page]

Send Suggestions or Comments to webmaster@scholar.lib.vt.edu