Scholarly Communications Project

Nondestructive Evaluation of Zirconium Phosphate Bonded Silicon Nitride Radomes


Jonathan A. Medding

Thesis submitted to the Faculty of the Virginia Tech in partial fulfillment of the requirements for the degree of





J.C. Duke, Jr., Chair
E.G. Henneke
S.L. Kampe

December 17, 1996
Blacksburg, Virginia



by Jonathan A. Medding Dr. J.C. Duke, Jr., Chairman Material Science and Engineering

The performance advances of radar-guided missiles have created a need for radome materials with improved strength, toughness, and thermal shock capabilities. Zirconium phosphate bonded silicon nitride (Zr-PBSN), which has a low and thermally stable dielectric constant, high rain erosion resistance and a low-cost processing method, has been developed for radome applications in advanced tactical missiles. Pressureless sintering reduces processing costs, but is untried for radome manufacturing. The tendency for catastrophic failure requires that each radome fabricated with this material/method be inspected for defects prior to use. Visible, thermographic and ultrasonic nondestructive evaluation (NDE) methods have been tested with Zr-PBSN discs containing fabricated flaws likely to be present in a radome.

Ultrasonic C-scanning using a 0.25" diameter, 15 MHz focused transducer with a pulse-echo configuration was clearly superior at detecting cracks, delaminations, impurities, voids and porosity variation. A method for determining local porosity via the longitudinal elastic wave velocity was developed and can be incorporated into an ultrasonic scanning system. A system that uses a computer to perform all motion control, data acquisition, and data manipulation, but requiring a skilled operator for scan setup and interpretation of the data has been proposed.

Full text (PDF) 1,167,769 Bytes

The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
[ETD main page] [Search ETDs][] [SCP home page] [library home page]

Send Suggestions or Comments to