Scholarly Communications Project


High-Frequency Dimensional Effects in Ferrite-Core Magnetic Devices

by

Glenn R. Skutt

Dissertation submitted to the Faculty of the Virginia Tech in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

Approved

Fred C. Lee, Chair
Ioannis Besieris
Dusan Borojevic
Dan Chen
Werner Kohler

October 4, 1996
Blacksburg, Virginia


Abstract

MnZn ferrites are widely used in power electronics applications where the switching frequency is in the range of several tens of kilohertz to a megahertz. In this range of frequencies the combination of relatively high permeability and relatively low conductivity found in MnZn ferrite helps to minimize the size of magnetic devices while maintaining high efficiency. The continuing improvement in semiconductor switches and circuit topologies has led to use of high-frequency switching circuits at ever increasing power levels. The magnetic devices for these high-power, high-frequency circuits require magnetic CORES that are significantly larger than standard ferrite-core devices used at lower power levels. Often such large ferrite cores must be custom designed, and at present this custom design is based on available material information without regard for the physical size of the structure.

This thesis examines the issues encountered in the use of larger MnZn ferrite cores for high-frequency, high-power applications. The two main issues of concern are the increased power dissipation due to induced currents in the structure and the change in inductance that results as the flux within the core is redistributed at higher frequencies. In order to model these problems using either numerical or analytical methods requires a reliable and complete set of material information. A significant portion of this work is devoted to methods for acquiring such material information since such information is not generally available from the manufacturers. Once the material constants required for the analysis are determined, they are used in both closed-form and numerical model to illustrate that large ferrite cores suffer significant increases in loss and significant decreases in inductance for frequencies as low as several hundred kilohertz. The separate impacts of the electrical and magnetic losses in the core are illustrated through the use of linear finite element analyses of several example core structures. The device impedances calculated using the FEA tools show fair agreement with measurement. An analysis of gapped structures and segmented cross-sections shows that these design options can reduce the severity of the dimensional problems for some designs.

Full text (PDF) 7,666,028 Bytes


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
[ETD main page] [Search ETDs][etd.vt.edu] [SCP home page] [library home page]

Send Suggestions or Comments to webmaster@scholar.lib.vt.edu