Scholarly Communications Project


Neural Fuzzy Techniques In Vehicle Acoustic Signal Classification

by

Somkiat Sampan

PhD Dissertation submitted to the Faculty of the Virginia Tech in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

Approved

Hugh F. VanLandingham, Chair
William T. Baumann
John S. Bay
Robert D. James
Jeffrey H. Reed
John F. Rossi

April 23, 1997
Blacksburg, Virginia


Abstract

Vehicle acoustic signals have long been considered as unwanted traffic noise. In this research acoustic signals generated by each vehicle will be used to detect its presence and classify its type. Circular arrays of microphones were designed and built to detect desired signals and suppress unwanted ones. Circular arrays with multiple rings have an interesting and important property that is constant sidelobe levels. A modified genetic algorithm that can work directly with real numbers is used in the circular array design. It offers more effective ways to solve numerical problems than a standard genetic algorithm.

In classifier design two main paradigms are considered: multilayer perceptrons and adaptive fuzzy logic systems. A multilayer perceptron is a network inspired by biological neural systems. Even though it is far from a biological system, it possesses the capability to solve many interesting problems in variety fields. Fuzzy logic systems, on the other hand, were inspired by human capabilities to deal with fuzzy terms. Its structures and operations are based on fuzzy set theory and its operations. Adaptive fuzzy logic systems are fuzzy logic systems equipped with training algorithms so that its rules can be extracted or modified from available numerical data similar to neural networks. Both fuzzy logic systems and multilayer perceptrons have been proved to be universal function approximators. Since there are approximations in almost every stage, both of these system types are good candidates for classification systems.

In classification problems unequal learning of each class is normally encountered. This unequal learning may come from different learning difficulties and/or unequal numbers of training data from each class. The classifier tends to classify better for a well-learned class while doing poorly for other classes. Classification costs that may be different from class to class can be used to train and test a classifier. An error backpropagation algorithm can be modified so that the classification costs along with unequal learning factors can be used to control classifier learning during its training phase.


List of attached files

File NameSize (Bytes)
ETD.PDF763,646 Bytes


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
[ETD main page] [Search ETDs][etd.vt.edu] [SCP home page] [library home page]

Send Suggestions or Comments to webmaster@scholar.lib.vt.edu