Scholarly
    Communications Project


Document Type:Dissertation
Name:Hong Zhuang
Email address:hzhuang@vt.edu
URN:1998/00870
Title:Synthesis and Characterization of Aryl Phosphine Oxide Containing Thermoplastic Polyimides and Thermosetting Polyimides with Controlled Reactivity
Degree:Doctor of Philosophy
Department:Chemistry
Committee Chair: James E. McGrath
Chair's email:jmcgrath@chemserver.chem.vt.edu
Committee Members:John G. Dillard
John J. Lesko
Judy S. Riffle
James P. Wightman
Keywords:polyimides, fireresistance, phosphine oxide, thermosetting polyimides, structural adhesives
Date of defense:April 14, 1998
Availability:Release the entire work immediately worldwide.

Abstract:

Phosphorus containing monomers, bis(3-aminophenyl)methyl phosphine oxide (m-DAMPO) and bis(3-aminophenyl)phenyl phosphine oxide (m-DAPPO), were synthesized and incorporated into a thermoplastic poly(arylene ether imide) based upon 2,2'-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride and 1,3-phenylene diamine, in order to study their influence on flame resistance and other properties. DAMPO or DAPPO were quantitatively incorporated in concentrations of 25, 50, 75 and 100 mole percent, using the "one pot" ester-acid method. The number average molecular weights of the prepared materials were controlled to 20,000g/mol by off-setting the stoichiomety and endcapping with phthalic anhydride. This strategy enabled one to distinguish the effects of the phosphine oxide incoporation from the influence of molecular weight. The resulting copolymers demonstrated a significant increase in char yield as a function of the phosphine oxide content, thus suggesting improved fire resistance. Glass transition temperatures similar to the control were determined by DSC analysis. Analysis of the mechanical behavior of the DAMPO system at room temperature showed that tensile strength and elongation at failure values were comparable to the control system, while the DAPPO containing copolymers were surprisingly brittle. The influence of the reactive endgroup on the synthesis, cure behavior and network properties of thermosetting polyetherimides was investigated. Reactive phenylacetylene, acetylene and maleimide terminated poly(ether imide) oligomers were prepared and characterized. Optimal reaction conditions were established to produce fully endcapped oligomers with imidized structures and controlled molecular weight. The phenylacetylene endcapped system was synthesized by a conventional ester-acid method. The acetylene endcapped system was prepared via modified ester-acid method and the maleimide endcapped system was fabricated utilizing an amic-acid route. It was determined that phenylethynyl endcapped polymers could be thermally cured at high temperatures (350-380C) providing good processibility. The networks exhibited thermal stability, chemical resistance and good adhesion strength, ideal as "primary" bonding adhesives. Acetylene and maleimide endcapped systems were prepared for application as "secondary" bonding materials, meaning that they are cured at a lower temperature than that of the Tg of the primary structure. Lap shear test results indicated good adhesion to titanium when cured at 250C -280C. The cured materials showed high glass transition temperatures and good thermal and thermo-oxidative stability as determined by DSC, TGA and DMA. Good chemical resistance was demonstrated via solvent extraction measurements. The influence of molecular weight between crosslinks (Mc) on thermal and mechanical behavior was also investigated. Lower molecular weight oligomers exhibited lower Tg and cure temperatures, whereas the cured networks resulting from lower molecular weight oligomers afforded higher Tg and higher gel fractions, but reduced toughness.

List of Attached Files

Etd1.pdf HZVITA5.PDF


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.