Americans never tire of telling themselves that they have created a technological society. We even seem to be delighted about this and many believe that the pathway to improved life is through continuous technological innovation. Whether this is true or not is debatable, but I think we can all agree that technological literacy is as important as cultural literacy in our modern world. Without a good grounding in the study of technology, we will become technopeasants in the new millennium of the 21st century. If this is so, then why isn’t every child in American school systems given a solid basis in technology education from kindergarten through the twelfth grade? Why are we allowing such an important and vital component of education to be left to an ad hoc approach which children may get in the classroom, but often are left to glean for themselves?

There is a vital need to inform others about the importance of the study of technology in our schools. School officials, teachers, community members, and parents should all be aware of what technology education is and what it means to be technologically literate. They need to learn that what we are talking about is much more than just learning computers or teaching with technology. And, lastly, each one of them needs to become an advocate for technology education in their own community so more and more school systems begin to include technology education as part of their core curriculum.

But how do we inform others about the importance of the study of technology in our schools? What resources are available to each of us to spread the word about the need for technology education for everyone? How can we inform others that we must not confuse the study of technology (technology education) with the teaching of how to use technology (educational technology) exclusively? In a nutshell, where do we begin?

Each of us has a vested interest in the success of technology education, as citizens and as professionals. We are the ones best equipped to inform others and we should be the leaders in spreading the word about technology education and technology education standards to those we come in contact with. There are many resources available that we can use to educate ourselves for this task. One of the richest resources for the promotion of the study of technology is a new document which the Technology for All Americans Project has recently produced called Technology for All Americans: A Rationale and Structure for the Study of Technology. It is currently available for purchase through the International Technology Education Association (ITEA).

In addition to the Rationale and Structure, the Technology for All Americans Project homepage is available for anyone to look at and gain more information. The URL is: http://scholar.lib.vt.edu/TAA/TAA.html. Also, ITEA has a number of publications and videos available for purchase that deal with technology education. The Technology Teacher and Technology and Children are two of the current journals printed throughout the school year. In cooperation with Thompson Learning Tools, ITEA recently produced a video titled, “Technology Education — A New Paradigm.” Using a selection of powerful images shot at schools across the country, the video provides an excellent overview of the study of technology and the need for Standards for Technology Education.

We all need to promote technology education as a crucial core subject in schools. The critical message to be told to others is that the study of technology is important to everyone. It is as vital to a “liberal education” as knowing how to read, to write, or to calculate. The message is clear, now is the time to deliver it.

William E. Dugger, Jr.
One important aspect of any complex and comprehensive development effort has to do with structure and organization. The Technology for All Americans Project is no exception. The challenges associated with defining and organizing the content of technology are extremely difficult given the complex and dynamic nature of the concept. The following paragraphs are designed to provide a brief overview of the organizational structure that is being used by the Standards Team to accomplish this process.

The foundational structure for the standards has been provided in the document *Technology for All Americans: A Rationale and Structure for the Study of Technology* which was developed during Phase I of the project. In that document, a conceptual framework, based on three Universals, is presented and described. These Universals include Processes, Knowledge, and Contexts (see Figure 1). These Universals represent the largest conceptual components in the structure and are designed to be inclusive of the study of technology.

Dimensions of Technology represent the next level of detail. The Processes Universal contains four Dimensions while the Knowledge and Context Universals both contain three Dimensions (see Figure 1). Taken collectively, the Universals and Dimensions represent the conceptual foundation and framework presented in the *Rationale and Structure*.

The work of the Phase II Standards Team is to build on this foundation by refining and detailing the Universals and Dimensions into content standards for the grades K-2, 3-5, 6-8, and 9-12. Writing the standards consists of an overarching set of principles that underlie the vision of technological literacy. The Team has developed an outline to guide the writing of the standards that reflect the thinking of the *Rationale and Structure*.

The outline of the standards aids in building a language that describes what every person is expected to know and do in technology. The context of technology involves the many practical reasons why technology is developed, applied, and studied. Those three contexts -- Physical Systems, Information Systems, and Biological/Chemical Systems -- are therefore being used as the settings of the Content Standards. Physical systems are those that are tangible and made of physical resources and/or transport people and things. Informational Systems are concerned with processing, storing, and using data. Such systems provide the foundation for today’s “information age.” Finally,
Technology for All Americans Project hired four new staff members for Phase II of the project, including filling two new positions. The new members join Dr. William Dugger, Jr., Director, and Jodie Altice, Administrative Assistant, in helping to create and establish Standards for Technology Education.

Pamela “Pam” Brooks Newberry, a 1996 Albert Einstein Distinguished Educator Fellow, is the project’s senior research associate. She is responsible for researching and contributing to the development and promotion of the Standards for Technology Education. For nine years, Pam taught technology and mathematics education. She has won several awards, including being named the 1994 William C. Lowery Virginia Teacher of the Year and receiving the 1993 Presidential Award for excellence in teaching Mathematics and Science.

Kenneth Singletary and Amy Kinser have been hired for the new positions of research assistant and public relations/dissemination assistant, respectively. Ken, whose duties include researching and writing project assignments, is a former newspaper reporter, university instructor, and graduate student. Amy Kinser is working part time as the PR/dissemination assistant and is responsible for coordinating project communication activities. Also newly hired is Diane Kitts, the project’s secretary.

The first draft of the Standards for Technology Education will be ready to view during the consensus workshops starting in October 1997.

By: Dr. Rodney Custer
Standards Team Leader: Grades 9-12

Visit ITEA on the Internet at their new address:
http://www.iteawww.org

1914 Association Drive
Reston, VA 20191-1539
Phone (703) 860-2100
Fax (703) 860-0353
Email: itea@iris.org

The Standards Team Leaders

Grades K-2 and 3-5:
Jane Wheeler is the Principal of Monte Vista Elementary School in Rohnert Park, California.

Grades 6-8:
Dr. Franzie Loepp is Distinguished Professor at Illinois State University and a co-director for the Center for Mathematics, Science and Technology.

Grades 9-12:
Dr. Rodney Custer is the program leader of technology and industry education program and Associate Professor at the University of Missouri-Columbia.
The Standards Team

The role of the Standards Team is to propose, evaluate, and approve the content of the standards. Representatives from technology, mathematics, and science education, as well as engineering, make up the team.

William Ball  
Clague Middle School  
Ann Arbor, Michigan

Clare Benson  
University of Central England  
Birmingham, England

Barry Burke  
Montgomery County Public Schools  
Rockville, Maryland

Kristin Callender  
Duane Elementary School  
Lakewood, Colorado

Rodney Custer *  
Illinois State University

Robert Daiber  
Triad High School  
St. Jacob, Illinois

Denise Denton  
University of Washington

Anthony Giliberti **  
Indiana State University

Jeffrey Grimmer  
Mankato East High School  
Mankato, Minnesota

Michael Hacker  
The MSTE Project  
Stoney Brook, New York

Norman Hackerman  
The Robert A. Welch Foundation  
Houston, Texas

Linda Hallenbeck  
East Woods School  
Hudson, Ohio

Jane Hill  
Lanier Middle School  
Freeport, Texas

Michael Jensen  
Paonia High School  
Paonia, Colorado

Stephan Knobloch  
Crossfield Elementary School  
Herndon, Virginia

Connie Larson  
John Wetton Elementary School  
Gladstone, Oregon

Franzie Loepp *  
Illinois State University

Chip Miller  
Century High School  
Hillsboro, Oregon

Michael Mino  
The Gilbert School  
Winsted, Connecticut

Tonja Schofield  
Sylvan Middle School  
Atlanta, Georgia

Kathy Thornton  
University of Virginia

Leon Trilling  
Massachusetts Institute of Technology

Brigitte Valesey **  
Walter Johnson High School  
Bethesda, Maryland

Scott Warner  
Lawrenceburg High School  
Lawrenceburg, Indiana

Jane Wheeler *  
Monte Vista Elementary School  
Rohnert Park, California

George Willcox  
Virginia Department of Education

Michael Wright **  
University of Missouri-Columbia

* Leader  
** Recorder

The Advisory Group

The Advisory Group will recommend the best practices in standards development and determine ways for the study of technology to be integrated within the total school curriculum.

Rodger Bybee  
Executive Director  
National Research Council  
Center for Science, Mathematics, and Engineering Education

Daniel Goroff  
Professor  
Mathematics Department  
Harvard University

Thomas Hughes, Jr.  
Director of Foundation Development  
International Technology Education Association

Linda Rosen  
former Executive Director  
National Council of Teachers of Mathematics

James Rutherford  
Director, Project 2061  
American Association for the Advancement of Science

Kendall Starkweather  
Executive Director  
International Technology Education Association

Gerald Wheeler  
Executive Director  
National Science Teachers Association

William Wulf  
President  
National Academy of Engineering