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Asymptotic Pseudo
State Observers

Ingrid Blumthaler∗, Ulrich Oberst†

1 Introduction
Already in 1964 Luenberger constructed an asymptotic state estimator or observer
for observable Kalman state systems. We consider the same problem for (more
general) Rosenbrock systems or polynomial matrix models. The results include
necessary and sufficient conditions for the existence of an input/output behavior
with proper transfer matrix, called an asymptotic pseudo state observer, whose
output is asymptotically equal to the Rosenbrock system’s pseudo state if the in-
put of the observer is formed by the input and output of the Rosenbrock system.
Moreover, an algorithm for the construction of one and then indeed many stable
observers is given.
Vidyasagar [3, p. 149] already studied pseudo state observers in context with two-
parameter compensators where, however, the systems are described by their transfer
matrices and not as I/O behaviors and where the autonomous parts of the behaviors
are not investigated in detail.
We also discuss the existence and construction of asymptotic input observers and
asymptotic output controllers. A predecessor of these results is the work of Wolovich
[4, pp. 161 - 177]. We present an algorithm which checks whether a given in-
put/output behavior, the plant, admits an asymptotic input observer, and, if so,
constructs all possible observers. Such an observer is another input/output system
which uses the plant’s output as input to produce an approximation of the plant’s
input as output. Analogous results are obtained for the output controllers. For the
observer and controller input/output behaviors, properties such as properness and
stability are taken into account as was already the case in Wolovich’s book.
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2 Technical Preparations

Definition 1 (I/O behavior). Let F be the signal space of all real-valued C∞-
functions on R. Alternatively, F may also be the set of distributions on R.
The set of all solutions

(
y(t)
u(t)

)
∈ Fp+m of a system of differential equations of the

form
P
(

d
dt

)
y(t) = Q

(
d
dt

)
u(t)

where P ∈ R[s]p×p, det(P ) 6= 0, and Q ∈ R[s]p×m is called input/output behavior,
or, shorter, I/O behavior or I/O system. The vector u(t) can be chosen arbitrarily
and is therefore called the system’s input, the vector y(t) is referred to as output.
The matrix

H := P−1Q ∈ R(s)p×m

is called the behavior’s transfer matrix.

Remark 2. For any I/O behavior

B =
{(

y(t)
u(t)

)
∈ Fp+m; P

(
d
dt

)
y(t) = Q

(
d
dt

)
u(t)

}
it is possible to construct matrices A1 ∈ Rn×n, B1 ∈ Rn×m, C1 ∈ Rp×n and
D1 ∈ R[s]p×m such that the equations

x′(t) = A1x(t) +B1u(t),
y(t) = C1x(t) +D1

(
d
dt

)
u(t)

represent a Kalman realization of the behavior, i.e., there is an isomorphism{(
x(t)
u(t)

)
∈ Fn+m; x′(t) = A1x(t) +B1u(t)

}
∼= B,(

x(t)
u(t)

)
7→
(

C1x(t)+D1

(
d
dt

)
u(t)

u(t)

)
=:
(

y(t)
u(t)

)
.

If the transfer matrix H = P−1Q of the I/O behavior is proper (i.e., for all the
entries of H the degree of the numerator is smaller than or equal to the degree of
the denominator), then the matrix D1 in the Kalman realization is also a constant
matrix. In this case the system can be built without use of differentiators. This
property is very desirable in practice. We will call behaviors with proper transfer
matrix proper behaviors.

Remark 3. For any matrix H ∈ R(s)p×m there exists a unique controllable I/O
system

B =
{(

y(t)
u(t)

)
∈ Fp+m; P

(
d
dt

)
y(t) = Q

(
d
dt

)
u(t)

}
with transfer matrix H, called the controllable realization of H.
The matrix (P,−Q) describing the system’s equations can be computed as universal
left annihilator of d ·

(
H

idm

)
where d is a common divisor of all of the denominators
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of entries of H.
A universal left annihilator of a matrix M ∈ R[s]k×l with Smith form S = UMV
are the last k − rank(M) rows of U .

Definition 4. An I/O behavior

B =
{(

y(t)
u(t)

)
∈ Fp+m; P

(
d
dt

)
y(t) = Q

(
d
dt

)
u(t)

}
is called stable if its autonomous part

B0 :=
{
y(t) ∈ Fp; P

(
d
dt

)
y(t) = 0

}
is asymptotically stable, i.e., if all possible outputs to the input zero tend to zero for
t → ∞. In consequence, all possible outputs to the same input are asymptotically
equal if the system is stable.

Definition 5. We define the set

T := {t ∈ R[s]; all zeroes of t have negative real part}

and the quotient ring R[s]T of stable rational functions, i.e.,

R[s]T =
{

f(s)
g(s) ∈ R(s); g(s) ∈ T

}
.

Let S denote the ring of all proper stable rational functions:

S :=
{

f(s)
g(s) ∈ R(s); deg(f(s)) ≤ deg(g(s)) and

all zeroes of g(s) have negative real part
}
.

3 Asymptotic Pseudo State Observers

Description of the problem

Definition 6. A Rosenbrock system or polynomial matrix model is a generalization
of a Kalman system, given by equations of the form

A
(

d
dt

)
x(t) = B

(
d
dt

)
u(t),

y(t) = C
(

d
dt

)
x(t) +D

(
d
dt

)
u(t)

where A ∈ R[s]n×n, B ∈ R[s]n×m, C ∈ R[s]p×n and D ∈ R[s]p×m are polynomial
matrices and det(A) 6= 0. We will always assume that the transfer matrices H1 :=
A−1B and H2 := CA−1B +D are proper.
The system’s input u(t), its output y(t) and the pseudo state x(t) are again vectors
in the module F of C∞-functions (or, more generally, distributions) on R.
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Input and output of a Rosenbrock system are normally known, or they can
be measured. That is, in general, not true for the pseudo state vector. It may
however be important to know the pseudo state vector or at least an approximation
to it, since this knowledge is, for example, necessary for stabilizing the system via
feedback. Consequently, it is an interesting question if it is possible to reconstruct
a Rosenbrock system’s pseudo state from its input and output. More detailed, we
are looking for a new I/O behavior B3 whose output is asymptotically equal to the
desired pseudo state vector if input and output of the Rosenbrock system are used
as input.
The given Rosenbrock system and the desired “pseudo state observer system” are
shown in the following picture.

� ��
x̂

B3
q

-

� �

- -

?

q q
m m

Ax = Bu

D C

y

qu x

hq

Definition 7. Let a Rosenbrock system be given. An I/O behavior

B3 =
{(

x̂(t)
y(t)
u(t)

)
∈ Fn+p+m;P3

(
d
dt

)
x̂(t) = (Qy, Qu)

(
d
dt

) ( y(t)
u(t)

)}
with input

(
y(t)
u(t)

)
and output x̂(t) is called asymptotic observer of the pseudo state

x(t) if the following condition is fulfilled:
If u(t) denotes the input, y(t) the output and x(t) the pseudo state of the original
system and x̂(t) is an output of B3 to

(
y(t)
u(t)

)
, then

lim
t→∞

(x̂(t)− x(t)) = 0

i.e., x̂(t) and the pseudo state x(t) are asymptotically equal.

Results

We consider the Rosenbrock system

A
(

d
dt

)
x(t) = B

(
d
dt

)
u(t),

y(t) = C
(

d
dt

)
x(t) +D

(
d
dt

)
u(t)

where we assume that the transfer matrices H1 = A−1B and H2 = CA−1B+D are
proper.



“main”
2008/5/13
pagei

i
i

i

i
i

i
i

Theorem 8. If there exist matrices X ∈ R[s]n×n
T and Y ∈ Sn×p such that

(X,Y )
(
A
C

)
= idn,

then there is a proper stable asymptotic observer of the pseudo state of the Rosen-
brock system. In this case one such system can be constructed in the following way:
Let (P3, Q3) be the controllable realization of (X,Y ). Then the behavior

B3 :=

{(
x̂(t)
y(t)
u(t)

)
∈ Fn+p+m; P3

(
d
dt

)
x̂(t) =

= (P3Y, P3 (XB − Y D))
(

d
dt

) ( y(t)
u(t)

)}

with transfer matrix H3 := (Hy, Hu) := (Y,XB − Y D) is a valid proper stable
asymptotic pseudo state observer.

Remark 9.

1. The assumption of the preceding theorem is slightly stronger than detectabil-
ity (compare [1, Ch. 5.3.2]) of the Rosenbrock system, i.e., existence of a left
inverse matrix of ( A

C ) in R[s]T .

2. A method for computing the controllable realization of a matrix was described
in Remark 3.

3. Observe that the assumption of the preceding theorem is in particular satisfied
if ( A

C ) has a left inverse in S. In fact, the following lemma shows that these
two conditions are equivalent for many common examples. The next theorem
will show how to test whether a matrix has a left inverse in S in practice.

Lemma 10. Assume that the studied Rosenbrock system is internally proper ac-
cording to Vardulakis [2, Ch. 4.5], i.e., not only the transfer matrices H1 and H2,
but also the matrices A−1 and CA−1 are proper. Internal properness is for instance
fulfilled for Kalman systems.
Then ( A

C ) has a left inverse (X,Y ) with X ∈ R[s]n×n
T and Y ∈ Sn×p (as required

in the last theorem) if and only if it has a left inverse (X,Y ) ∈ Sn×(n+p).

Theorem 11. Let(
E
0

)
= U

(
A
C

)
V where E :=

(
e1 0

...
0 en

)

be the Smith form of ( A
C ) with respect to S, i.e., U ∈ Gln+p(S), V ∈ Gln(S), and

e1| · · · |en in S. Then the following statements are equivalent:
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1. ( A
C ) has a left inverse (X,Y ) ∈ Sn×(n+p),

2. E−1 ∈ Sn×n, and

3. e−1
n ∈ S.

In this case, V (E−1, 0)U ∈ Sn×(n+p) is one such left inverse, and the set of all left
inverse matrices of ( A

C ) in S is given by the affine submodule

V (E−1, 0)U + Sn×pU2

where U2 is a universal left annihilator of ( A
C ) in S (conf. Remark 3).

Remark 12. Note that the ring S can be interpreted as quotient ring R[σ]T1 where

σ := (s+ 1)−1 and T1 :=
{

t
(s+1)deg(t) ; t ∈ T

}
.

Consequently, the Smith form of a matrix M ∈ R[s]k×l with respect to S can be
computed in the following way: Consider M as a matrix in R(σ) via

R[s] = R[s+ 1] ⊆ R(s+ 1) = R((s+ 1)−1) = R(σ)

and compute the Smith form (with respect to R[σ]). This is then also the Smith
form with respect to S = R[σ]T1 .

In Theorem 8, sufficient conditions for the existence of a proper asymptotic
pseudo state observer behavior have been given. The following theorem will show
that these conditions are in fact also necessary.

Theorem 13. If there is a proper asymptotic observer

B3 =
{(

x̂(t)
y(t)
u(t)

)
∈ Fn+p+m;P3

(
d
dt

)
x̂(t) = (Qy, Qu)

(
d
dt

) ( y(t)
u(t)

)}
of the pseudo state of a Rosenbrock system, then there exist matrices X ∈ R[s]n×n

T ,
Y ∈ Sn×p such that

(X,Y )
(
A
C

)
= idn,

Y = Hy, and
XB − Y D = Hu,

where H3 := (Hy, Hu) := P−1
3 (Qy, Qu) is the transfer matrix of B3.

Moreover, B3 is stable.

Corollary 14. There is a proper asymptotic observer of the pseudo state of the
Rosenbrock system

A
(

d
dt

)
x(t) = B

(
d
dt

)
u(t),

y(t) = C
(

d
dt

)
x(t) +D

(
d
dt

)
u(t),
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(where the transfer matrices H1 := A−1B and H2 := CA−1B + D are assumed to
be proper) if and only if there exist matrices X ∈ R[s]n×n

T and Y ∈ Sn×p such that

XA+ Y C = idn .

The observer system is then automatically stable.

If we skip both the assumption that the given Rosenbrock system has proper
transfer matrices and the requirement that the constructed observer system shall
be proper, then the previous result has the following form:

Corollary 15. There is an asymptotic observer of the pseudo state of the Rosen-
brock system

A
(

d
dt

)
x(t) = B

(
d
dt

)
u(t),

y(t) = C
(

d
dt

)
x(t) +D

(
d
dt

)
u(t),

(where the transfer matrices H1 and H2 are not necessarily proper) if and only if
there exists a matrix (X,Y ) ∈ R[s]n×(n+p)

T such that

XA+ Y C = idn,

i.e., the Rosenbrock system is detectable.
The observer system is then automatically stable.

4 Other Asymptotic Observers and Controllers

Asymptotic Input Observers

We consider an input/output system

B1 :=
{(

y1(t)
u(t)

)
∈ Fp+m; P1

(
d
dt

)
y1(t) = Q1

(
d
dt

)
u(t)

}
where P1 ∈ R[s]p×p, det(P1) 6= 0, and Q1 ∈ R[s]p×m. We don’t assume that the
transfer matrix H1 := P−1

1 Q1 ∈ R(s)p×m is proper. The goal in this section is to
reconstruct – or at least approximate – the input u from the output y1 if that is
possible. More precisely: We are looking for an “asymptotic input observer”, i.e., a
second I/O system such that the output y2(t) of B2 is asymptotically equal to the
input u(t) of B1 if the output y1(t) of B1 is taken as input of B2. The relationship
between B1 and B2 is visualized in the following picture:

- -q q q
u ∈ Fm y1 ∈ Fp y2 ∈ FmB1 B2

Definition 16. Let an I/O system B1 with input u(t) and output y1(t) be given.
A second I/O system

B2 :=
{(

y2(t)
y1(t)

)
∈ Fm+p; P2

(
d
dt

)
y2(t) = Q2

(
d
dt

)
y1(t)

}
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with input y1(t) and output y2(t) is called an asymptotic input observer of B1 if

lim
t→∞

(y2(t)− u(t)) = 0

whenever y1(t) is an output of the original system B1 to the input u(t) and y2(t) is
an output of the observer system B2 to the input y1(t).

Theorem 17. Let

B1 :=
{(

y1(t)
u(t)

)
∈ Fp+m; P1

(
d
dt

)
y1(t) = Q1

(
d
dt

)
u(t)

}
be an I/O system with transfer matrix H1 = P−1

1 Q1. Then the following two state-
ments are equivalent:

1. The system B1 has a proper asymptotic input observer B2.

2. There exists a matrix H2 ∈ Sm×p such that

(a) H2H1 = idm and

(b) H2P
−1
1 ∈ R[s]m×p

T .

If these conditions are fulfilled, then B2 is automatically stable.
If condition (2) is fulfilled and H2 ∈ Sm×p is such a left inverse of H1, then the
controllable realization B2 of H2 is a proper asymptotic input observer system.

Example 18. We consider the case p = m = 1, i.e., P1 and Q1 are polynomials,
P1 6= 0, and H1 = Q1

P1
= Q1cont

P1cont
(where gcd(P1cont, Q1cont) = 1) is a rational

function. If H2 shall satisfy condition (2) of the previous theorem, (2a) yields
H2 = P1

Q1
= P1cont

Q1cont
. H2 ∈ S implies

deg(P1) ≤ deg(Q1) and Q1cont ∈ T.

Condition (2b) means that H2P
−1
1 = 1

Q1
shall be contained in R[s]T , i.e.,

Q1 ∈ T.

Note that in this case H2P
−1
1 is even contained in S.

So we get the result that B1 admits a proper asymptotic input observer system if
and only if

deg(P1) ≤ deg(Q1) and Q1 ∈ T

(Q1cont = Q1
gcd(P1,Q1)

is then automatically also contained in T ).
In this case the controllable realization

B2 :=
{(

y2(t)
y1(t)

)
∈ F1+1; Q1cont

(
d
dt

)
y2(t) = P1cont

(
d
dt

)
y1(t)

}
of H2 is one such observer.
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Remark 19.

1. The system of the serial connection of first B1 and then B2 is stable if and
only if both of the systems B1 and B2 are stable.

2. It is not so easy to check in practice if condition (2) in Theorem 17 is satisfied.
However, if the original system B1 is stable, then any matrix H2 ∈ Sm×p

fulfilling H2H1 = idm does automatically satisfy condition (2b). Hence, we
only have to check the existence of a left inverse matrix of H1 in S in this case,
and that can be achieved using Theorem 11. This theorem yields in addition
all possible left inverse matrices in S, and for each of these left inverses, the
controllable realization (conf. Remark 3) is a proper stable asymptotic input
observer system.

3. If we don’t want to assume that B1 is stable, we may also use the following
considerations: Condition (2) is in particular fulfilled if there is a matrix
H2 ∈ Sm×p such that H2H1 = idm and H2P

−1
1 ∈ Sm×p. The next theorem

provides an algorithm for checking whether this condition is fulfilled.

Theorem 20. Consider an I/O system

B1 :=
{(

y1(t)
u(t)

)
∈ Fp+m; P1

(
d
dt

)
y1(t) = Q1

(
d
dt

)
u(t)

}
with transfer matrix H1 = P−1

1 Q1 and p ≥ m. Let(
E
0

)
= XH1Y where E :=

(
e1 0

...
0 em

)

be the Smith form of H1 with respect to S, and let(
F
0

)
= U

(
P1X

−1

0, idp−m

)
V where F :=

(
f1 0

...
0 fp

)

be the Smith form of
(

P1X−1

0,idp−m

)
with respect to S.

Then the following statements are equivalent:

1. There is a matrix H2 ∈ Sm×p such that

(a) H2H1 = idm and

(b) H2P
−1
1 ∈ Sm×p.

2. (a) rank(H1) = m and e−1
m ∈ S and

(b) Vij

eifj
∈ S for 1 ≤ i ≤ m and 1 ≤ j ≤ p.
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If these conditions are fulfilled and R ∈ Sm×p is defined by Rij := Vij

eifj
, then the

set of all matrices H2 satisfying condition (1) is

Y (E−1, 0)X − Y RU12X2 + Sm×(p−m)U22X2

where

U =:
(
U11 U12

U21 U22

)
∈ S(p+(p−m))×(p+(p−m)) and X =:

(
X1

X2

)
∈ S(m+(p−m))×p.

If we skip the requirement that the constructed input observers system shall
be proper, we get the following result:

Theorem 21. Let

B1 :=
{(

y1(t)
u(t)

)
∈ Fp+m; P1

(
d
dt

)
y1(t) = Q1

(
d
dt

)
u(t)

}
be an I/O system with transfer matrix H1 = P−1

1 Q1. Then the following three
statements are equivalent:

1. The system B1 has an asymptotic input observer B2.

2. There exists a H2 ∈ R[s]m×p
T such that

(a) H2H1 = idm and

(b) H2P
−1
1 ∈ R[s]m×p

T .

3. There exists a Z ∈ R[s]m×p
T such that ZQ1 = idm.

If these conditions are fulfilled, then B2 is automatically stable.
If condition (2) is fulfilled and H2 ∈ R[s]m×p

T is such a left inverse of H1, then the
controllable realization B2 of H2 is an asymptotic input observer system.

Remark 22. Note that the existence of Z ∈ R[s]m×p
T with ZQ1 = idm as required

in condition (3) can be checked using the same method as described in Theorem 11,
using the ring R[s]T instead of S in this case. Theorem 11 does also indicate how
to find the set of all Z satisfying condition (3). For any of these matrices Z, the
matrix H2 := ZP1 fulfills condition (2) and hence gives rise to an asymptotic input
observer.

Asymptotic Output Controllers

The problem we are going to study in this section will turn out to be very similar
to the one of an asymptotic input observer.

This time, we start with an input/output behavior

B2 =
{(

y2(t)
y1(t)

)
∈ Fm+p; P2

(
d
dt

)
y2(t) = Q2

(
d
dt

)
y1(t)

}
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where P2 ∈ R[s]m×m, det(P2) 6= 0, and Q2 ∈ R[s]m×p. The goal is to construct – if
possible – an I/O system

B1 =
{(

y1(t)
u(t)

)
∈ Fp+m; P1

(
d
dt

)
y1(t) = Q1

(
d
dt

)
u(t)

}
such that for the serial connection of first B1 and then B2 the output y2(t) of B2 is
asymptotically equal to any input u(t) of the behavior B1. This means that, if such
a system B1 does exist, it is possible to control the output of the given behavior
B2. Therefore, B1 is called an “asymptotic output controller” of B2. Note that
the situation is, as the following picture shows, indeed very similar to the situation
described in the section on asymptotic input observers. But this time, the behavior
B2 is given, and the behavior B1 is the one we wish to construct.

- -q q q
u ∈ Fm y1 ∈ Fp y2 ∈ FmB1 B2

Definition 23. Let an I/O system B2 with input y1(t) and output y2(t) as above
be given.
A second I/O system

B1 :=
{(

y1(t)
u(t)

)
∈ Fp+m; P1

(
d
dt

)
y1(t) = Q1

(
d
dt

)
u(t)

}
with input u(t) and output y1(t) is called an asymptotic output controller of B2 if

lim
t→∞

(y2(t)− u(t)) = 0

whenever y1(t) is an output of the controller system B1 to the input u(t) and y2(t)
is an output of the original system B2 to the input y1(t).

Theorem 24. Let

B2 :=
{(

y2(t)
y1(t)

)
∈ Fm+p; P2

(
d
dt

)
y2(t) = Q2

(
d
dt

)
y1(t)

}
be an input/output behavior with transfer matrix H2 = P−1

2 Q2 ∈ R(s)m×p. Then
the following two statements are equivalent:

1. There is a proper stable asymptotic output controller B1 of the behavior B2.

2. B2 is stable and the transfer matrix H2 has a right inverse H1 ∈ Sp×m.

If these conditions are fulfilled, the behavior of the serial connection of first B1 and
then B2 is stable as well.
If condition (2) is satisfied, then one proper stable asymptotic output controller
system B1 can be constructed as the controllable realization of H1.
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Remark 25.

1. Note that Theorem 11 can easily be modified for testing the existence of right
inverse matrices instead of left inverse matrices.

2. The following theorem is a variation of the previous one without the require-
ment that the constructed output controller system shall be proper.

Theorem 26. Let

B2 :=
{(

y2(t)
y1(t)

)
∈ Fm+p; P2

(
d
dt

)
y2(t) = Q2

(
d
dt

)
y1(t)

}
be an input/output behavior with transfer matrix H2 = P−1

2 Q2 ∈ R(s)m×p. Then
the following two statements are equivalent:

1. There is a stable asymptotic output controller B1 of the behavior B2.

2. B2 is stable and the transfer matrix H2 has a right inverse H1 ∈ R[s]p×m
T .

If these conditions are fulfilled, the behavior of the serial connection of first B1 and
then B2 is stable as well.
If condition (2) is satisfied, then one stable asymptotic output controller system B1

can be constructed as the controllable realization of H1.

Remark
All presented results are valid in a more general context: Instead of R[s] one may
consider the polynomial algebra F [s] over an arbitrary field F . The set T can
be replaced by any multiplicatively closed saturated set of nonzero polynomials in
F [s], and the signal space by an arbitrary injective F [s]-cogenerator F . Asymptotic
stability of an autonomous behavior is then replaced by T-autonomy where an
autonomous behavior is called T-autonomous if there is some t ∈ T such that
tw = 0 for all trajectories w in the behavior.

In particular, the cases of other stability regions and of discrete systems are
included in the more general framework.
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