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The nonsmooth Newton
method on Riemannian
manifolds

C. Lageman∗, U. Helmke†, J.H. Manton‡

1 Introduction

Solving nonlinear equations in Euclidean space is a frequently occurring problem
in optimization and control theory, with many applications to e.g. tracking and
filtering, optimal control, observer theory and robust control. A classical solution
approach uses the Newton algorithm which converges locally quadratically fast to
a nondegenerate zero of the vector field F .

In the last two decades there has been a considerable interest in intrinsic op-
timization algorithms on Riemannian manifolds, including a Riemannian variant of
the Newton iteration, see [5, 10, 11, 7, 1]. Such algorithms use the intrinsic Rie-
mannian structure of the constraint set, such as geodesics and covariant derivatives.
Thus the Riemannian Newton iteration for a smooth vector field F is given by

xk+1 = expxk
(−(∇F (xk))−1F (xk)),

where F is a smooth vector field, exp the exponential map and ∇ denotes the
covariant derivative.

In Euclidean space, it is possible to extend the Newton algorithm to non-
differentiable vector fields [9, 8]. Using tools from nonsmooth analysis, one can re-
place the standard differential by a generalized differential, e.g. Clarke’s generalized
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Jacobian. Under suitable regularity conditions of F , local superlinear convergence
of such algorithms can be established.

Motivated by recent work of [6, 2], and applications in e.g. distributed con-
trol and optimization [4], we present here a extension of the nonsmooth Euclidean
Newton method of Qui and Sun [9] to Riemannian manifolds. The algorithm is
locally superlinearily convergent. A numerical example illustrates the feasibility of
the method.

2 Nonsmooth covariant derivatives on Riemannian
manifolds

Let M denote a smooth, complete Riemannian manifold with Riemannian metric
〈·, ·〉 and tangent bundle TM . The vector space of linear endomorphisms on a
tangent space TxM , x ∈ M , is denoted by L(TxM). We denote by L(TM) the
bundle of vector spaces L(TxM) over M . Let ∇ denote the Levi-Civita connection
on M and expxthe exponential map at x ∈ M . We denote by τγ,t1,t2 the parallel
transport along a smooth curve γ : R → M from γ(t1) to γ(t2). The Riemannian
distance on M is denoted by dist and a ball around x ∈ M of radius r by Br(x).
P(S) denotes the set of subsets of S.
A vector field X on M is called Lipschitz continuous, if for any x ∈ M there is
a constant C > 0 and a neighborhood U ⊂ TxM of 0 such that expx : TxM → M
is bijective on U and for all v ∈ U

‖τexpx(tv),1,0X(expx(v)) − X(x)‖ ≤ C‖v‖.

Note that our definition of Lipschitz continuity implies that the vector field is Lip-
schitz continuous in Riemannian normal coordinates, and even in arbitrary local
charts. It follows from Rademacher’s theorem [3], that the set of points Ω(X),
where X is not differentiable, has measure zero. For points x ∈ M \ Ω(X) and
v ∈ TxM the covariant derivative ∇vX(x) can be defined by

lim
t→0

τγ,t,0(X(γ(t))) − X(x)

t

for a smooth curve γ : R → M with γ(0) = x, γ′(0) = v. For any x ∈ M \Ω(X), we
therefore obtain a well defined map ∇X(x) : TxM → TxM , given by v +→ ∇vX(x).
In order to extend this definition to arbitrary points x ∈ M , we introduce a set-
valued generalization of the covariant derivative for nonsmooth vector fields.

Definition 1. Let X be a Lipschitz continuous vector field on M . The generalized

covariant derivative of X at x ∈ M is

∇X(x) = co{A ∈ L(TxM) | ∃(xk) ⊂ M \ Ω(X), xk → x, A = lim
k→∞

∇X(xk)}, (1)

where co denotes the convex hull of a subset of L(TxM). We denote by ∇X : M →
P(L(TM)) the set-valued map x +→ ∇X(x).
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Note that, for any x ∈ M \ Ω(X), the generalized covariant derivative is single
valued and thus coincides with the above definition. In particularly, it shares many
properties with Clarke’s earlier concept of a generalized Jacobian. Similar to the
nonsmooth Newton algorithm in Euclidean case, cf. [9], we have to impose a regular-
ity conditon to ensure that the Newton iteration is well-defined on a neighborhood
of a solution of X(x) = 0.

Definition 2. Let X be a Lipschitz continuous vector field on M . We call X
regular at a point x, if all linear maps A ∈ ∇X(x) are bijective.

It is easily seen, that regularity of a Lipschitz continuous vector field X in a point
x ∈ M implies regularity on a neighborhood of x. Moreover, this neighborhood can
be chosen such that there is a uniform bound on the operator norm ‖A−1‖ for all
elements A of ∇X .

However, even in Euclidean space, the Lipschitz continuity of a vector field
is not sufficient to guarantee convergence of the nonsmooth Newton algorithms at
a regular point. Thus an additional regularity assumption on X is needed. This
is given by the concept of semismoothness, which relates directional derivatives to
the generalized covariant derivative; see [9] for a Euclidean space version of this
definition.

Definition 3. A Lipschitz continuous vector field X on M is called semismooth

at x ∈ M , if for all w ∈ TxM and arbitrary sequences tk ∈ R+, tk → 0, wk ∈ TxM ,
wk → w, and Ak ∈ ∇X(expx(tkwk)) the limit

lim
k→∞

Ak

(

τexpx(tkwk),0,1(wk)
)

(2)

exists.

3 The nonsmooth Newton iteration

We can now extend the nonsmooth Newton iteration from Euclidean space, see [9],
to Riemannian manifolds. The basic idea behind this construction is simple enough:
the generalized Jacobian is replaced by our generalized covariant derivative and
parallel translation along a line is replaced by that along a geodesic.

Definition 4. Let X be a semismooth vector field on M . Any sequence (xk) in M
satisfying

xk+1 = expxk
(−A−1

k X(xk)) with Ak ∈ ∇X(xk)

is called a nonsmooth Newton iteration.

Under the assumptions of semismoothness and regularity we get local superlinear
convergence of this Newton methods as in the Euclidean case.

Theorem 5. Let X be a semismooth vector field on M . Assume that x∗ is a zero
of X and X is regular at x∗. Then there is a neighborhood U of x∗ such that any
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nonsmooth Newton iteration (xk) starting in U is well-defined for all k ∈ N and
converges locally superlinearily fast to x∗:

lim
k→∞

dist(xk+1, x∗)

dist(xk, x∗)
= 0. (3)

Proof. The proof is by an extension of the arguments in the Euclidean case. One
can show that the semi-smoothness implies that there is a bounded neighborhood
V of x∗ and a continuous, nonnegative function g : R → R with limt→0 g(t)/t = 0
such that for all x ∈ V , v ∈ TxM

∥

∥X(y) − τexpx(tv),0,1(X(x)) + Aτexpx(tv),0,1(v)
∥

∥ ≤ g(dist(x, y)). (4)

Choosing a suitably small neighborhood W ⊂ V of x∗, the inequality (4) yields for
all x ∈ W

‖A−1X(x) + exp−1
x (x∗)‖ ≤ Cg(dist(x, x∗)),

where C > 0 is a constant. Since V is bounded and expx(A−1X(x)), x∗ ∈ V , there
is a constant K > 0 such that

dist(expx A−1X(x), x∗) ≤ K‖A−1X(x) + exp−1
x (x∗)‖ ≤ CKg(dist(x, x∗)).

Using the boundedness assumptions and assuming the W is suitably small, there
exists K > 0 such that for any xk ∈ W

dist(xk+1, x
∗) < CKg(dist(xk, x∗)). (5)

The superlinear convergence now follows directly from the asymptotic properties of
g for t → 0.

The Newton-Kantorovich convergence result for the nonsmooth Newton iter-
ation on Euclidean space, [9], can also be extended to the Riemannian case. We
omit the proof here.

Theorem 6. Let X be a semismooth, Lipschitz continuous vector field on M .
Assume that we are given a ball Br(x0) such that the following conditions hold

• for all x ∈ Br(x0), A ∈ ∇X(x) satisfies ‖A−1‖ < C1,

• for all x ∈ Br(x0), v ∈ TxM , such that expx(tv) ∈ Br(x0) for all t ∈ [0, 1],
∥

∥

∥

∥

Av − lim
t→0

τ1,0,expx(tv)(X(expx(tv))) − X(x)

t

∥

∥

∥

∥

≤ C2dist(x, expx(tv))

• for all x ∈ Br(x0), v ∈ TxM , such that expx(tv) ∈ Br(x0) for all t ∈ [0, 1],

∥

∥

∥

∥

τ1,0,expx(tv)(X(expx(tv))) − X(x) − lim
t→0

τ1,0,expx(tv)(X(exp(tv)) − X(x)

t

∥

∥

∥

∥

≤ C3dist(x, exp(tv))
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• C1(C2 + C3) < 1 and C2‖X(x0)‖ < r.

Then the nonsmooth Newton iteration starting in x0 converges to the unique solution
x∗ of X(x) = 0 in Br(x0).

4 Examples

We illustrate the nonsmooth Newton algorithm by simple examples. Consider any
Lipschitz continuous vector field Y on Rn and let Sn−1 denote the set of Euclidean
norm unit vectors in Rn. We endow Sn−1 with the Riemannian metric induced by
the Euclidean one. The orthogonal projection at x ∈ Sn−1 onto the tangent space
TxSn−1 is the linear map π(x) : Rn → TxSn−1, defined by π(x) = In − xx&. Thus
the projected vector field

X(x) = (In − xx&)Y (x)

defines a vector field on Sn−1. It is easy to see that the generalized covariant
derivative of X on Sn−1 then is given by

∇vX(x) = (In − xx&)DY (x)(v) − x&Y (x)v,

where DY (x) denotes Clarke’s generalized derivative. We consider now two special
situations.

4.1 Piecewise linear vector fields

Assume that we are given polytopes Pj in Rn, j = 1, . . . , k, of the form Cjx ≥ 0
where Cj is a mj × n matrix, mj ∈ N. Note that these polytopes are unbounded.
We further assume that if Pi∩Pj 0= {0} then Pi∩Pj is a lower dimensional polytope
Pl. Let Y be a continuous, piecewise linear vector field such that Y (x) = Bjx holds
for x ∈ Pj . Note that this implies, for any subpolytope Pl = Pi ∩ Pj , the condition
Blx = Bix = Bjx for all x ∈ Pl. The Clarke generalized Jacobian of Y is readily
calculated as

DY (x)(v) = co {Bjv | x ∈ Pj} .

Consider the restriction X(x) = π(x)Y (x) of Y to Sn−1 This yields the generalized
covariant derivative

∇vX(x) = co
{

(In − xx&)Bjv − x&Bjxv | x ∈ Pj , dimPj = n
}

.

Based on this information, we can immediately implement the nonsmooth Newton
iteration.

4.2 Component-wise minimum vector fields

Let us consider a vector field

Y (x) = min{h1(x), . . . , hk(x)}
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Figure 1. Evolution of ‖X‖ for n = 4 and k = 5.

with h1(x), . . . , hk(x) ∈ Rn homogeneous polynomials and the minimum taken com-
ponent wise. We denote by hjl(x) the lth row of hj . Standard rules for the Clarke
generalized gradient of a minimum function, cf. [3], imply that

DY (x)(v) =







co{dhj1(x)(v) | hj1(x) = max{h11(x), . . . , hk1(x)}, j ∈ {1, . . . , k}}
...

co{dhjn(x)(v) | hjn(x) = max{h1n(x), . . . , hkn(x)}, j ∈ {1, . . . , k}}






.

We can now calculate ∇vX for this Y by the formulas given above. Furthermore,
it is easy to see that X is semismooth. Using ∇vX and the well-known formula for
geodesics on the sphere, we can implement our nonsmooth Newton algorithm. For
the special case that all polynomials have degree 1, i.e. hj(x) = Bjx and bj1, . . . , bjn

denoting the rows of Bj , we have to following algorithm.

1. Let B1, . . . , Bk ∈ Rn×n and x0 ∈ Sn−1.

2. Choose column vectors

Gi ∈







co{bj1 | bj1xi = max{b11xi, . . . , bk1xi}, j ∈ {1, . . . , k}}
...

co{bjn | bjnxi = max{b1nxi, . . . , bknxi}, j ∈ {1, . . . , k}}






.

3. Determine vi ∈ Txi
Sn−1 from the equation

((In − xix
&
i )Gi − xT

i Y (xi))vi = −X(xi)



! !

!

!

!

!

4. Set

xi+1 = cos(‖vi‖)xi +
sin(‖vi‖)

‖vi‖
vi

and go to step 2.

In Figure 1 we show the results of this algorithm for 10 randomly chosen 10 × 10
matrices. The algorithm is terminated when ‖X‖ is below 10−13. The diagram
shows the evolution of ‖X‖. Thus, in the example the algorithm converges locally
superlinearily as expected. However, since Newton algorithms are only locally con-
vergent, the region of attraction can be reached arbitrarily late. In our simulations,
we experienced that superlinear convergence occurs only in a region where Y co-
incides with a fixed B̃x, with B̃ consisting of rows of different Bi. This can be
explained by realizing that generically the zeros of Y lie in the interior of such re-
gions. It it also observed that the size of the regions of attraction increases with
increasing k and decreases with increasing n.
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