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1 Introduction

Solving nonlinear equations in Euclidean space is a frequently occurring problem
in optimization and control theory, with many applications to e.g. tracking and
filtering, optimal control, observer theory and robust control. A classical solution
approach uses the Newton algorithm which converges locally quadratically fast to
a nondegenerate zero of the vector field F.

In the last two decades there has been a considerable interest in intrinsic op-
timization algorithms on Riemannian manifolds, including a Riemannian variant of
the Newton iteration, see [5, 10, 11, 7, 1]. Such algorithms use the intrinsic Rie-
mannian structure of the constraint set, such as geodesics and covariant derivatives.
Thus the Riemannian Newton iteration for a smooth vector field F' is given by

zhi1 = exp,, (—(VF(zx)) "' F(xp)),

where F' is a smooth vector field, exp the exponential map and V denotes the
covariant derivative.

In Euclidean space, it is possible to extend the Newton algorithm to non-
differentiable vector fields [9, 8]. Using tools from nonsmooth analysis, one can re-
place the standard differential by a generalized differential, e.g. Clarke’s generalized
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Jacobian. Under suitable regularity conditions of F', local superlinear convergence
of such algorithms can be established.

Motivated by recent work of [6, 2], and applications in e.g. distributed con-
trol and optimization [4], we present here a extension of the nonsmooth Euclidean
Newton method of Qui and Sun [9] to Riemannian manifolds. The algorithm is
locally superlinearily convergent. A numerical example illustrates the feasibility of
the method.

2 Nonsmooth covariant derivatives on Riemannian
manifolds

Let M denote a smooth, complete Riemannian manifold with Riemannian metric
(,-) and tangent bundle TM. The vector space of linear endomorphisms on a
tangent space T, M, ©x € M, is denoted by L(T,M). We denote by L(TM) the
bundle of vector spaces L(T, M) over M. Let V denote the Levi-Civita connection
on M and exp,the exponential map at x € M. We denote by 7, ¢, ¢, the parallel
transport along a smooth curve v: R — M from v(¢1) to y(t2). The Riemannian
distance on M is denoted by dist and a ball around x € M of radius r by B,(z).
P(S) denotes the set of subsets of S.

A vector field X on M is called Lipschitz continuous, if for any x € M there is
a constant C' > 0 and a neighborhood U C T, M of 0 such that exp, : T,M — M
is bijective on U and for all v € U

||7—expm(tv),1,0X(expx(v)) - X(if)” < CHUH

Note that our definition of Lipschitz continuity implies that the vector field is Lip-
schitz continuous in Riemannian normal coordinates, and even in arbitrary local
charts. It follows from Rademacher’s theorem [3], that the set of points Q(X),
where X is not differentiable, has measure zero. For points x € M \ Q(X) and
v € T, M the covariant derivative V, X (x) can be defined by

o Teo(XG(0) ~ X(@)
t—0 t

for a smooth curve v: R — M with v(0) = z, 4/(0) = v. For any z € M\ Q(X), we
therefore obtain a well defined map VX (z) : T,M — T, M, given by v — V,X(z).
In order to extend this definition to arbitrary points x € M, we introduce a set-
valued generalization of the covariant derivative for nonsmooth vector fields.

Definition 1. Let X be a Lipschitz continuous vector field on M. The generalized
covariant derivative of X at x € M is

VX(z) =co{A e L(T,M) | Ixr) C M\ QUX),zp — 2z, A= lim VX(xx)}, (1)

k—o0

where co denotes the convex hull of a subset of L(T,M). We denote by VX: M —
P(L(TM)) the set-valued map x — VX (z).



Note that, for any x € M \ Q(X), the generalized covariant derivative is single
valued and thus coincides with the above definition. In particularly, it shares many
properties with Clarke’s earlier concept of a generalized Jacobian. Similar to the
nonsmooth Newton algorithm in Euclidean case, cf. [9], we have to impose a regular-
ity conditon to ensure that the Newton iteration is well-defined on a neighborhood
of a solution of X (z) = 0.

Definition 2. Let X be a Lipschitz continuous vector field on M. We call X
regular at a point x, if all linear maps A € VX (x) are bijective.

It is easily seen, that regularity of a Lipschitz continuous vector field X in a point
x € M implies regularity on a neighborhood of x. Moreover, this neighborhood can
be chosen such that there is a uniform bound on the operator norm ||A~Y| for all
elements A of VX.

However, even in Euclidean space, the Lipschitz continuity of a vector field
is not sufficient to guarantee convergence of the nonsmooth Newton algorithms at
a regular point. Thus an additional regularity assumption on X is needed. This
is given by the concept of semismoothness, which relates directional derivatives to
the generalized covariant derivative; see [9] for a Euclidean space version of this
definition.

Definition 3. A Lipschitz continuous vector field X on M is called semismooth
at x € M, if for allw € T,M and arbitrary sequences tp, € RY, ty — 0, wy € T, M,
w — w, and Ax € VX (exp, (txwy)) the limit

W Ay (Texp, (t44),0,1 (Wk)) (2)

k—o0

exists.

3 The nonsmooth Newton iteration

We can now extend the nonsmooth Newton iteration from Euclidean space, see [9],
to Riemannian manifolds. The basic idea behind this construction is simple enough:
the generalized Jacobian is replaced by our generalized covariant derivative and
parallel translation along a line is replaced by that along a geodesic.

Definition 4. Let X be a semismooth vector field on M. Any sequence (xy) in M
satisfying
Tpt1 = eXpXk(—Alle(xk)) with Ax € VX (xx)

15 called a nonsmooth Newton iteration.

Under the assumptions of semismoothness and regularity we get local superlinear
convergence of this Newton methods as in the Euclidean case.

Theorem 5. Let X be a semismooth vector field on M. Assume that x* is a zero
of X and X is reqular at x*. Then there is a neighborhood U of x* such that any



nonsmooth Newton iteration (xy) starting in U is well-defined for all k € N and
converges locally superlinearily fast to x*:

dist(zgq1,2%)
el dist(zg, z*) =0 ®)

Proof. The proof is by an extension of the arguments in the Euclidean case. One
can show that the semi-smoothness implies that there is a bounded neighborhood
V of z* and a continuous, nonnegative function g: R — R with lim; o g(¢)/t = 0
such that forallz e V,v e T, M

||X(y) — Texp,, (tv),0,1 (X(x)) + ATexpm(tv),O,l (U) || < g(diSt('xa y)) (4)

Choosing a suitably small neighborhood W C V of x*, the inequality (4) yields for
alz e W
|AT X (2) + expy ' (27)]| < Cy(dist(z,27)),

where C' > 0 is a constant. Since V is bounded and exp, (A~'X (z)),z* € V, there
is a constant K > 0 such that

dist(exp, A7 X (2),2*) < K||A™ X () + exp, ' (2*)| < CKg(dist(z, 2*)).

Using the boundedness assumptions and assuming the W is suitably small, there
exists K > 0 such that for any x; € W

dist(zp41,2™) < CKg(dist(zg, x*)). (5)

The superlinear convergence now follows directly from the asymptotic properties of
gfort—0. O

The Newton-Kantorovich convergence result for the nonsmooth Newton iter-
ation on Euclidean space, [9], can also be extended to the Riemannian case. We
omit the proof here.

Theorem 6. Let X be a semismooth, Lipschitz continuous vector field on M.
Assume that we are given a ball B,(xo) such that the following conditions hold

e for all x € B,.(x0), A € VX () satisfies |A71|| < C1,
o for all x € By(xg), v € T, M, such that exp,(tv) € B(xg) for all t € [0, 1],

HAU . }IH(I) 7-I,O,szpm(tv) (X(e)t(pT (t’U))) - X(J?)

‘ < Codist(z, exp, (tv))
° fOT all v € BT(Z‘O); ORS T’I‘M7 such that expx(tv) € BT(J:O) fOT all t € [0, 1];

. T1,0,exp, (tv) (X (exp(tv)) — X (z)
T10.0xp, () (X (XD, (80))) = X (x) — limy Pl

< Csdist(w, exp(tv))




° 01(02 + Cg) <1 and CQHX(J)Q)H <r.

Then the nonsmooth Newton iteration starting in xo converges to the unique solution
x* of X(z) =0 in By(x0).

4 Examples

We illustrate the nonsmooth Newton algorithm by simple examples. Consider any
Lipschitz continuous vector field Y on R™ and let S™~! denote the set of Euclidean
norm unit vectors in R”. We endow S"~! with the Riemannian metric induced by
the Euclidean one. The orthogonal projection at € S”~! onto the tangent space
T,S™1 is the linear map 7(z): R® — T,S"~ !, defined by 7(x) = I,, — zx . Thus
the projected vector field

X(z) = (I, —zz" )Y (2)

defines a vector field on S™~!. It is easy to see that the generalized covariant
derivative of X on S™~! then is given by

VX (z) = (I, — xz")DY (z)(v) — 2 'Y (x)v,

where DY (x) denotes Clarke’s generalized derivative. We consider now two special
situations.

4.1 Piecewise linear vector fields

Assume that we are given polytopes P; in R", j = 1,...,k, of the form Cjz > 0
where Cj is a m; x n matrix, m; € N. Note that these polytopes are unbounded.
We further assume that if P;,NP; # {0} then P;NP; is a lower dimensional polytope
P,. Let Y be a continuous, piecewise linear vector field such that Y («) = B;x holds
for € P;. Note that this implies, for any subpolytope P, = P; N P;, the condition
Bjx = B;x = Bjx for all x € P,. The Clarke generalized Jacobian of Y is readily
calculated as
DY (z)(v) =co{Bjv |z € P;}.

Consider the restriction X (z) = 7(z)Y (z) of Y to S"~! This yields the generalized
covariant derivative

VX (z) = co{(I, — zz")Bjv—a' Bjav | x € Pj,dim P = n}.

Based on this information, we can immediately implement the nonsmooth Newton
iteration.

4.2 Component-wise minimum vector fields

Let us consider a vector field

Y (z) = min{hi(z),..., hx(z)}



Figure 1. Evolution of || X|| forn =4 and k = 5.

with hi(x),. .., hip(z) € R™ homogeneous polynomials and the minimum taken com-
ponent wise. We denote by hj;(x) the {th row of h;. Standard rules for the Clarke
generalized gradient of a minimum function, cf. [3], imply that

co{dhji(z)(v) | hj1(z) = max{hii(z),..., hw(2)}, 7 € {1,...,k}}
DY (z)(v) = :
co{dhj,(z)(v) | hjn(z) = max{hin(2),..., hen(z)}, 7 € {1,...,k}}
We can now calculate V, X for this Y by the formulas given above. Furthermore,
it is easy to see that X is semismooth. Using V, X and the well-known formula for
geodesics on the sphere, we can implement our nonsmooth Newton algorithm. For
the special case that all polynomials have degree 1, i.e. hj(z) = Bjz and bj1, ..., bjn
denoting the rows of B;, we have to following algorithm.

1. Let By,...,B; € R™™ and 29 € S™ L.
2. Choose column vectors
CO{bjl | bjlxi = max{buxi, ey bklxi},j S {]., ey k}}
G; €
co{bjn | bjnz; = max{bi,xi,...,bpnxi},j € {1,...,k}}

3. Determine v; € TmiS’"_1 from the equation

(I, — xixiT)Gi — x;‘FY(xl))vl = —X(z;)



4. Set

sin(||v;
Tiy1 = cos(vil])z: + ”(%r”)w
3

and go to step 2.

In Figure 1 we show the results of this algorithm for 10 randomly chosen 10 x 10
matrices. The algorithm is terminated when ||X| is below 10713, The diagram
shows the evolution of || X||. Thus, in the example the algorithm converges locally
superlinearily as expected. However, since Newton algorithms are only locally con-
vergent, the region of attraction can be reached arbitrarily late. In our simulations,
we experienced that superlinear convergence occurs only in a region where Y co-
incides with a fixed Bz, with B consisting of rows of different B;. This can be
explained by realizing that generically the zeros of Y lie in the interior of such re-
gions. It it also observed that the size of the regions of attraction increases with
increasing k and decreases with increasing n.
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