Baer's extension problem for multidimensional linear systems

Alban Quadrat* and Daniel Robertz†

Abstract. Within an algebraic analysis approach, the purpose of this paper is to constructively solve the following problem: given two fixed multidimensional linear systems \mathcal{B}_1 and \mathcal{B}_2, parametrize the multidimensional linear systems \mathcal{B} which contain \mathcal{B}_1 as a subsystem and satisfy that $\mathcal{B}/\mathcal{B}_1$ is isomorphic to \mathcal{B}_2. In particular, we parametrize the equivalence classes of multidimensional linear systems \mathcal{B} which admit a fixed parametrizable subsystem \mathcal{B}_p and satisfy that $\mathcal{B}/\mathcal{B}_p$ is isomorphic to a fixed autonomous system \mathcal{B}_a.

Keywords. Multidimensional linear systems, behavioural approach, Baer extensions, differential time-delay systems, constructive algebra, module theory.

1 Introduction

A well-known result due to R. E. Kalman states that any time-invariant 1-D linear system defined by a state-space representation can be decomposed into the direct sum of its controllable (i.e., parametrizable) and autonomous subsystems ([11]). Within the behavioural approach, this result was extended by J. C. Willems to time-invariant polynomial linear systems ([16]). Using an algebraic analysis approach, M. Fliess generalized this result in [10] to time-varying linear systems of ordinary differential equations whose coefficients belong to a differential field. However, it is well-known that this result does not admit a generalization for multidimensional linear systems.

In the recent works [20, 21], we constructively characterized when a multidimensional linear system \mathcal{B} is isomorphic to \mathcal{B}_2 as a subsystem and satisfies $\mathcal{B}/\mathcal{B}_1$ isomorphic to \mathcal{B}_a.
mensional linear system can be decomposed into a direct sum of its parametrizable subsystem and the system formed by its autonomous elements. The corresponding algorithm was implemented in the library OreModules ([6, 7]) and illustrated by different explicit examples. Moreover, we applied these results to the *Monge problem* which questions the existence of parametrizations of the solutions of multidimensional linear systems and to optimal control and variational problems ([20, 21]).

Within an algebraic analysis approach, we constructively solve here the more general problem consisting in parametrizing all the multidimensional linear systems C whose parametrizable subsystems are isomorphic to a given parametrizable system B_p and such that C/B_p are isomorphic to a given autonomous system B_a, i.e., $C/B_p \cong B_a$. In particular, B_p (resp., B_a) can be chosen as the parametrizable subsystem (resp., the system formed by the autonomous elements) of a multidimensional linear system B. Solving this last problem allows us to parametrize all the multidimensional linear systems which have the same parametrizable subsystem and autonomous system as B. We then show how that result allows us to find again those obtained in [20, 21]. Our results are based on the important concept of *Baer extensions* developed in homological algebra and its connections with the extension abelian group $\text{ext}_D^1(M, N)$ ([5, 12, 23]). This problem was pointed out to us by S. Shankar (Chennai Mathematical Institute) ([24]). We would like to thank him.

The plan of the paper is the following one: In Section 2, we recall Baer’s interpretation of the elements of the abelian group $\text{ext}_D^1(M, N)$ in terms of equivalence classes of extensions of N by M. In Section 3, we explicitly characterize $\text{ext}_D^1(M, N)$ as an abelian group, which allows us in Section 4 to parametrize the equivalence classes of multidimensional linear systems B which admit as a subsystem the system B_1 defined by M and satisfy that B/B_1 are isomorphic to the system B_2 defined by N. In Section 5, the previous results are applied to the particular situation where $N = t(P)$ is the torsion left D-submodule of a given finitely presented left D-module P and $M = P/t(P)$. We finally explain how to find again the results of [20, 21].

In what follows, we refer to [6, 13, 15, 18, 19, 25] and the references therein for the concepts relevant to the module-theoretic approach to systems theory.

2 Baer extensions and Baer sums

We refer to [5, 12, 23] for the classical definitions of a complex and an exact sequence.

Let us first introduce the concept of *Baer extensions* which will play an important role in what follows.

Definition 1 ([5, 12, 23])

We have the following definitions:

1. Let M and N be two left D-modules. An *extension of N by M* is an exact sequence e of left D-modules of the form:

\[e : 0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0. \]

(1)
2. Two extensions of \(N\) by \(M\), \(e_i : 0 \rightarrow N \xrightarrow{f_i} E_i \xrightarrow{g_i} M \rightarrow 0\), \(i = 1, 2\), are said to be equivalent, denoted by \(e_1 \sim e_2\), if there exists a \(D\)-isomorphism \(\phi : E_1 \rightarrow E_2\) such that we have the commutative exact diagram

\[
\begin{array}{c}
0 \rightarrow N \xrightarrow{f_1} E_1 \xrightarrow{g_1} M \rightarrow 0 \\
\| \downarrow \phi \| \end{array}
\]

\[
\begin{array}{c}
0 \rightarrow N \xrightarrow{f_2} E_2 \xrightarrow{g_2} M \rightarrow 0, \\
\end{array}
\]

or, equivalently, such that \(f_2 = \phi \circ f_1\) and \(g_1 = g_2 \circ \phi\) hold.

3. We denote by \([e]\) the equivalence class of the extension \(e\) for the equivalence relation \(\sim\). The set of all equivalence classes of extensions of \(N\) by \(M\) is denoted by \(e_D(M, N)\).

4. A short exact sequence of the form (1) is said to split if \(E \cong M \oplus N\), where \(\oplus\) (resp., \(\cong\)) denotes the direct sum (resp., that two modules are isomorphic).

Let us introduce the concept of Baer sum of two extensions ([5, 12, 23]).

Definition 2 ([5]). Let \(e_i : 0 \rightarrow N \xrightarrow{f_i} E_i \xrightarrow{g_i} M \rightarrow 0\), \(i = 1, 2\), be two extensions of \(N\) by \(M\) and let us define the following two \(D\)-morphisms:

\[
-f_1 \oplus f_2 : N \rightarrow E_1 \oplus E_2, \quad (g_1, -g_2) : E_1 \oplus E_2 \rightarrow M
\]

\[
n \mapsto (-f_1(n), f_2(n)), \quad (a_1, a_2) \mapsto g_1(a_1) - g_2(a_2).
\]

Then, the Baer sum of the extensions \(e_1\) and \(e_2\), denoted by \(e_1 + e_2\), is defined by the left \(D\)-module \(E_3 = \ker(g_1, -g_2)/\im(-f_1 \oplus f_2)\), i.e., by the short exact sequence

\[
0 \rightarrow N \xrightarrow{f_3} E_3 \xrightarrow{g_3} M \rightarrow 0,
\]

\[
n \mapsto \varpi(f_1(n), 0) = \varpi(0, f_2(n)), \quad \varpi(a_1, a_2) \mapsto g_1(a_1) = g_2(a_2)
\]

where \(\varpi : \ker(g_1, -g_2) \rightarrow E_3\) denotes the canonical projection onto \(E_3\).

We have the following classical but important result on extensions.

Theorem 3 ([5, 12, 23]). The set \(e_D(M, N)\) equipped with the Baer sum forms an abelian group: the equivalence class of the split short exact sequence

\[
0 \rightarrow N \xrightarrow{f_3} M \oplus N \xrightarrow{f_3} M \rightarrow 0
\]

defines the zero element of \(e_D(M, N)\) and the inverse of the equivalence class \([e]\) of (1) is defined by the equivalence class of the following two equivalent extensions:

\[
0 \rightarrow N \xrightarrow{-f_3} E \xrightarrow{g_3} M \rightarrow 0, \quad 0 \rightarrow N \xrightarrow{f_3} E \xrightarrow{-g_3} M \rightarrow 0.
\]
3 Computing extensions of finitely presented modules

In this section, we show how to compute the abelian group $\text{ext}_D^1(M, N)$, when M and N are two finitely generated left D-modules over a noetherian domain D ([23]).

By assumption, the left D-module M admits the finite free resolution

$$
\ldots \xrightarrow{R_3} D^{1 \times p_2} \xrightarrow{R_2} D^{1 \times p_1} \xrightarrow{R_1} D^{1 \times p_0} \xrightarrow{\eta} M \longrightarrow 0,
$$

namely, (2) is an exact sequence of left D-modules where $R_i \in D^{p_i \times p_{i-1}}$ and $(.R_i)(\lambda) = \lambda R_i$, for all $\lambda \in D^{1 \times p_i}$. Applying the contravariant left exact functor $\text{hom}_D(\cdot, N)$ to the complex $\ldots \xrightarrow{R_3} D^{1 \times p_2} \xrightarrow{R_2} D^{1 \times p_1} \xrightarrow{R_1} D^{1 \times p_0} \longrightarrow 0$, we obtain the following complex of abelian groups

$$
\ldots \xrightarrow{R_3} N^{p_2} \xrightarrow{R_2} N^{p_1} \xrightarrow{R_1} N^{p_0} \longrightarrow 0,
$$

where $(R_i)(\eta) = R_i \eta$, for all $\eta \in N^{p_{i-1}}$. For more details, see, e.g., [5, 12, 19, 23].

Applying the covariant right exact functor $D^m \otimes_D \cdot$ to the finite presentation (i.e., to the exact sequence) $D^{1 \times t} \xrightarrow{S} D^{1 \times s} \xrightarrow{\delta} N \longrightarrow 0$ of the left D-module N, and using the fact that D^m is a free right D-module, and thus, a flat right D-module, we obtain the following exact sequence:

$$
D^{m \times t} \xrightarrow{S} D^{m \times s} \xrightarrow{\text{id}_m \otimes \delta} N^m \longrightarrow 0.
$$

For more details, see, e.g., [5, 12, 19, 23].

Using the notations $p = p_0$, $q = p_1$, $r = p_2$, $R = R_1$ and combining (3) and (4), we obtain the following commutative diagram of abelian groups with exact columns:

$$
\begin{array}{cccc}
0 & 0 & 0 & \\
N^q & R_2 & N^p & \\
\downarrow \text{id}_q \otimes \delta & \downarrow \text{id}_q \otimes \delta & \downarrow \text{id}_p \otimes \delta & \\
D^{q \times s} & R_2 & D^{p \times s} & \\
\downarrow S & \downarrow S & \downarrow S & \\
D^{q \times t} & R_2 & D^{p \times t} & \\
\end{array}
$$

Let us now introduce the abelian group $\text{ext}_D^1(M, N) = \ker_N(R_2) / \text{im}_N(R)$, where:

$$
\ker_N(R_2) = \{ \eta \in N^q \mid R_2 \eta = 0 \} = \{ \eta = (\text{id}_q \otimes \delta)(A) \mid A \in D^{p \times s} : R_2 \eta = 0 \},
$$

$$
\text{im}_N(R) = RN^p = \{ \eta = (\text{id}_q \otimes \delta)(A) \mid \exists B \in D^{p \times s} : \eta = R((\text{id}_p \otimes \delta)(B)) \}.
$$

From (5), we get $(R_2) \circ (\text{id}_q \otimes \delta) = (\text{id}_r \otimes \delta) \circ (R_2)$ and $(R) \circ (\text{id}_p \otimes \delta) = (\text{id}_q \otimes \delta) \circ (R)$. Hence, using the exactness of the columns of (5), we obtain:

$$
R_2((\text{id}_q \otimes \delta)(A)) = (\text{id}_r \otimes \delta)(R_2 A) = 0 \Leftrightarrow \exists B \in D^{q \times t} : R_2 A = B S.
$$
With the previous notations, we have:

Lemma 4.

\[(\text{id}_q \otimes \delta)(A) = R((\text{id}_p \otimes \delta)(X)) = (\text{id}_q \otimes \delta)(R X)\]
\[\Leftrightarrow (\text{id}_q \otimes \delta)(A - R X) = 0 \Leftrightarrow \exists Y \in D^{q \times t}: A = R X + Y S\]

Hence, we obtain the following results.

Example 5.

Let us consider the commutative polynomial ring
\[\mathbb{D}\]
over, if \(Z \in D^{p \times s}, \exists Y \in D^{q \times t}: A = R X + Y S\]

Moreover, if we define the abelian group
\[\Omega = \{A \in D^{q \times s} | \exists B \in D^{r \times t}: R_2 A = B S\}, \]
then we have the following isomorphism of abelian groups
\[(\text{ext}^{1}_{D}(M, N) = \ker N(R_2) / \text{im} N(R_1)) \xrightarrow{\iota} \Omega / (\text{R} D^{p \times s} + D^{q \times t} S), \]
where \(\rho : \ker N(R_2) \rightarrow \text{ext}^{1}_{D}(M, N) \) (resp., \(\varepsilon : \Omega \rightarrow \Omega \big/ (\text{R} D^{p \times s} + D^{q \times t} S)\))

denotes the canonical projection onto \(\text{ext}^{1}_{D}(M, N) \) (resp., \(\Omega \big/ (\text{R} D^{p \times s} + D^{q \times t} S)\)).

We let the reader check that \(\iota\) is well-defined and bijective ([22]).

We recall that the abelian group \(\text{ext}^{1}_{D}(M, N)\) characterizes the obstructions for the existence of \(\xi \in N^p\) satisfying the inhomogeneous linear system \(R \xi = \zeta\), where \(\zeta \in N^q\) satisfies the compatibility condition \(R_2 \zeta = 0\). In particular, the vanishing of \(\text{ext}^{1}_{D}(M, N)\) implies that \(R_2 \zeta = 0\) is a necessary and sufficient condition for the existence of \(\xi \in N^p\) satisfying \(R \xi = \zeta\). For more details, see [6, 7, 18, 19].

If \(\ker D(R) = 0\), i.e., \(R_2 = 0\), we then get \(\Omega = D^{p \times s}\). Another simple case is \(N = D^{1 \times s}, S = 0\), for which we have \(\Omega = \{A \in D^{q \times s} | R_2 A = 0\} \) (see [4]).

If \(D\) is a commutative ring and \(\otimes\) denotes the Kronecker product, then using the identity \(U V W = \text{row}(V)(U^T \otimes W)\), where \(\text{row}(V)\) is obtained by concatenating the rows of \(V\), we have \(\Omega / (\text{R} D^{p \times s} + D^{q \times t} S) \cong D^{1 \times u} Z / (D^{1 \times (p \times q) \times t}) X\), where
\[X = \left(\begin{array}{c}
R_T \otimes I_s \\
I_q \otimes S
\end{array}\right) \in D^{(p \times q) \times q}, \quad Y = \left(\begin{array}{c}
R_T \otimes I_s \\
I_r \otimes S
\end{array}\right) \in D^{(q \times r) \times r},
\]
and \(Z \in D^{u \times q}\) is defined by \(\ker D(Y) = D^{1 \times u} (Z - T)\) and \(T \in D^{u \times r}\). Moreover, if \(D\) is a polynomial ring over a computable field \(k\) (e.g., \(k = \mathbb{Q}, \mathbb{F}_p\)), then, using Gröbner or Janet bases, we can explicitly describe the \(D\)-module \(\text{ext}^{1}_{D}(M, N)\) by means of generators and relations ([2, 8]). For the implementations of the corresponding algorithms, see the packages homalg ([3, 2]) and OreMorphisms ([9]).

Example 5.}

Let us consider the commutative polynomial ring \(D = \mathbb{Q}(\alpha)[\partial, \delta]\) of differential time-delay operators, where \(\alpha \in \mathbb{R}\), and the following two matrices:
\[R = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 + \delta^2 & -\alpha \partial \delta
\end{pmatrix} \in D^{2 \times 3}, \quad S = \begin{pmatrix}
\partial & -\partial \\
\partial \delta^2 & -\partial
\end{pmatrix} \in D^{2 \times 2}. \]
Let us define the D-modules $M = D^{1 \times 3}/(D^{1 \times 2} R)$ and $N = D^{1 \times 2}/(D^{1 \times 2} S)$. We have $R_2 = 0$, and thus, $\Omega = D^{2 \times 2}$, $\text{ext}^1_D(M, N) \cong D^{2 \times 2}/(R D^{3 \times 2} + D^{2 \times 2} S)$ and:

$$\text{ext}^1_D(M, N) \cong D^{1 \times 4}/ \left(D^{1 \times 10} \left(R^T \otimes I_2 \right) \right).$$ (11)

We denote by L the matrix appearing in (11) and $\epsilon : D^{1 \times 4} \rightarrow P = D^{1 \times 4}/(D^{1 \times 10} L)$ the canonical projection onto P. Denoting by $v_i = \epsilon(g_i)$ the residue class in P of the i^{th} vector of the standard basis $\{g_i\}_{1 \leq i \leq 4}$ of $D^{1 \times 4}$, we obtain:

$$v_i = 0, \quad i = 1, 2, \quad (1 + \delta^2) v_i = 0, \quad i = 3, 4, \quad \partial v_i = 0, \quad i = 3, 4.$$

Hence, the D-module P is generated by $v_3 = \epsilon((0, 0, 1, 0))$ and $v_4 = \epsilon((0, 0, 0, 1))$. Transforming back the row vectors g_3 and g_4 into 2×2 matrices, we obtain that the D-module $D^{2 \times 2}/(R D^{3 \times 2} + D^{2 \times 2} S)$ is generated by $\epsilon(A_1)$ and $\epsilon(A_2)$, where:

$$A_1 = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \quad A_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right).$$ (12)

It is a torsion D-module as we have $(1 + \delta^2) \epsilon(A_i) = 0$ and $\partial \epsilon(A_i) = 0, i = 1, 2$. Using (9), we obtain that the $\rho((\text{id}_2 \otimes \delta)(A_i))$'s generate the D-module $\text{ext}^1_D(M, N) = N^2/(R N^3)$ and satisfy $(1 + \delta^2) \rho((\text{id}_2 \otimes \delta)(A_i)) = 0$, $\partial \rho((\text{id}_2 \otimes \delta)(A_i)) = 0, i = 1, 2$.

If D is a non-commutative ring, then $\text{ext}^1_D(M, N)$ is an abelian group, but not a left D-module. If D is a k-algebra, where k is a field contained in the center of D, then $\text{ext}^1_D(M, N)$ is a k-vector space. If M and N are two finite-dimensional k-vector spaces or two holonomic left modules over the k-algebra of differential operators with k-polynomial (resp., k-rational) coefficients (the so-called Weyl algebras $A_n(k)$ and $B_n(k)$), then we can compute a k-basis of $\text{ext}^1_D(M, N)$ (see [8] and the references therein). However, $\text{ext}^1_D(M, N)$ is generally an infinite-dimensional k-vector space. If D is a non-commutative polynomial ring over which Gröbner or Janet bases exist (e.g., the Weyl algebras, certain classes of Ore algebras [6]), then we can compute the k-vector space formed by the matrices $A \in D^{n \times n}$ with a fixed order in the functional operators and a fixed degree (resp., fixed degrees) in the polynomial (resp., rational) coefficients which satisfy $R_2 A \in D^{n \times n}$. See [8] for more details and the package OreMorphisms ([9]) for an implementation.

4. **An explicit description of** $\text{ext}^1_D(M, N)$

The following theorem is an important result in homological algebra which can be traced back to the pioneering work of R. Baer ([1]).

Theorem 6 ([5, 12, 23]). Let M and N be two left D-modules. Then, the abelian groups $\text{ext}^1_D(M, N)$ and $\text{v}_D(M, N)$ are isomorphic.

The explicit description of $\text{ext}^1_D(M, N)$ – being proved by making Theorem 6 constructive for the interesting class of modules in systems theory – can be given now. For the sake of brevity, we refer to [22, Theorem 3] for the proof.
Theorem 7. Let $R \in D^{q \times p}$ and $S \in D^{t \times s}$ be two matrices with entries in D and \(M = D^{1 \times p} / (D^{1 \times q} R) \) and $N = D^{1 \times s} / (D^{1 \times t} S)$ the left D-modules finitely presented by R resp. S. Let us denote by $R_2 \in D^{r \times q}$ a matrix satisfying \(\ker_D(R) = D^{1 \times r} R_2 \). Then, every equivalence class of extensions of N by M is represented by

\[
e : 0 \rightarrow N \xrightarrow{\alpha} E \xrightarrow{\beta} M \rightarrow 0,
\]

where the left D-module E is defined by

\[
D^{1 \times (q+r)} \xrightarrow{Q} D^{1 \times (p+s)} \xrightarrow{\phi} E \rightarrow 0, \quad Q = \begin{pmatrix} R & -T \\ 0 & S \end{pmatrix} \in D^{(q+r) \times (p+s)},
\]

and T is a certain element of $\Omega = \{ A \in D^{q \times s} \mid \exists B \in D^{r \times t} : R_2 A = B S \}$.

Finally, the equivalence class $[e]$ only depends on the residue class $\varepsilon(T)$ of $T \in \Omega$ in $\Omega / (RD^{p \times s} + D^{r \times t} S) = \iota(\text{ext}_D^1(M, N))$, where ι is defined in (9).

Example 8. Let us consider again Example 5. Theorem 7 says there exist two non-trivial equivalence classes of extensions of N by M respectively defined by $E_1 = D^{1 \times 5} / \left(D^{1 \times 4} \begin{pmatrix} R & -T_1 \\ 0 & S \end{pmatrix} \right)$, where the matrices R and S are given by (10) and the matrices $T_1 = A_1$ and $T_2 = A_2$ by (12). Finally, the trivial extension of N by M (i.e., the split extension) is defined by the D-module E_0 where $T_0 = 0$.

Let \mathcal{F} be a left D-module. Applying the contravariant left exact functor $\text{hom}_D(\cdot, \mathcal{F})$ to (13), we obtain the following results [22, Corollary 1].

Corollary 9. With the previous notations, we have the following results:

1. $\ker \mathcal{F}(S) \xrightarrow{\alpha^*} \ker \mathcal{F}(Q) \xrightarrow{\beta^*} \ker \mathcal{F}(R) \leftarrow 0$ is an exact sequence, where the D-morphism β^* (resp., α^*) is defined by $\beta^*(\xi) = (\xi^T \ 0^T)^T$, for all $\xi \in \ker \mathcal{F}(R)$ (resp., $\alpha^*(\eta) = \eta_2$, for all $\eta = (\eta_1^T \ \eta_2^T)^T$, $\eta_1 \in \mathcal{F}^p$ and $\eta_2 \in \mathcal{F}^s$).

2. If \mathcal{F} is an injective left D-module ([23]), then we have the exact sequence:

\[
0 \leftarrow \ker \mathcal{F}(S) \xrightarrow{\alpha^*} \ker \mathcal{F}(Q) \xrightarrow{\beta^*} \ker \mathcal{F}(R) \leftarrow 0. \quad (15)
\]

Moreover, if \mathcal{F} is cogenerator ([23]), then (15) is exact if and only if (13) is.

5 Applications to multidimensional systems theory

The purpose of this section is to parametrize all equivalence classes of multidimensional linear systems which have a fixed parametrizable subsystem and a fixed autonomous system. Let $R \in D^{r \times p}$ be a matrix with entries in a noetherian domain D. If $M = D^{1 \times p} / (D^{1 \times q} R)$ denotes the left D-module finitely presented by R, then $t(M) = \{ m \in M \mid \exists 0 \neq a \in D : \ a m = 0 \}$ is a left D-submodule of M and we have the following canonical short exact sequence (see, e.g., [5, 12, 23]):

\[
0 \rightarrow t(M) \xrightarrow{\iota} M \xrightarrow{T} M/t(M) \rightarrow 0. \quad (16)
\]
An element of \(t(M) \) is called a torsion element of \(M \) and \(M \) is said to be torsion-free if \(t(M) = 0 \) and torsion if \(t(M) = M \) (see, e.g., [23]). Constructive results developed in [6, 7, 17] show that there exists a matrix \(R' \in \mathbb{D}^{q \times p} \) satisfying:

\[
t(M) = (D^{1 \times q} \ R')/(D^{1 \times q} \ R), \quad M/t(M) = D^{1 \times p}/(D^{1 \times q} \ R').
\]

If \(\mathcal{F} \) is an injective left \(D \)-module, applying the exact functor \(\text{hom}_D(\cdot, \mathcal{F}) \) to the exact sequence (16), we then get the exact sequence of abelian groups:

\[
0 \hookrightarrow \text{hom}_D(t(M), \mathcal{F}) \xleftarrow{\epsilon^*} \text{hom}_D(M, \mathcal{F}) \xrightarrow{\tau} \text{hom}_D(M/t(M), \mathcal{F}) \twoheadrightarrow 0.
\]

The linear system \(\ker F(R') = \{ \zeta \in \mathcal{F}^p \mid R' \zeta = 0 \} \cong \text{hom}_D(M/t(M), \mathcal{F}) \) is the parametrizable subsystem of \(\ker F(R) = \{ \eta \in \mathcal{F}^p \mid R \eta = 0 \} \cong \text{hom}_D(M, \mathcal{F}) \) as there always exists a matrix \(Q' \in \mathbb{D}^{p \times m} \) such that \(\ker F(R') = Q' \mathcal{F}^m \), i.e., any solution \(\eta \in \mathcal{F}^p \) of the system \(R' \eta = 0 \) has the form \(\eta = Q' \xi \) for a certain \(\xi \in \mathcal{F}^m \). For more details, see [6, 15, 17, 25]. For certain classes of multidimensional systems, \(\ker F(R') \) is also called the controllable subsystem of \(\ker F(R) \) (see, e.g., [6, 15, 17, 18, 25]).

If we denote by \(R'' \in D^{r \times q'} \) (resp., \(R'' \in D^{r' \times q''} \)) a matrix satisfying \(R = R'' R' \) (resp., \(\ker D_R(R') = D^{1 \times r'} \ R'' \)), then we have the following \(D \)-isomorphism ([8, 21]):

\[
t(M) \cong D^{1 \times q'/ \left(D^{1 \times (q+r')} \left(\begin{array}{cc} R'' & R_2' \end{array} \right) \right)}.
\]

The autonomous system defined by \(\ker F((R''^T \ R_2'')^T, \) \() \cong \text{hom}_D(t(M), \mathcal{F}) \) satisfies:

\[
\ker F((R''^T \ R_2'')^T, \) \() \cong \ker F(R)/\tau^*(\ker F(R')).
\]

This last system will be called the autonomous quotient of the system \(\ker F(R) \).

If \(M \) and \(N \) are respectively a torsion-free and a torsion left \(D \)-module defined by two finite presentations, Theorem 7 parametrizes the equivalence classes of extensions of \(N \) by \(M \). Moreover, if \(\mathcal{F} \) is an injective left \(D \)-module, by Corollary 9, we then obtain the equivalence classes of systems admitting \(\text{hom}_D(M, \mathcal{F}) \) as a parametrizable subsystem and \(\text{hom}_D(N, \mathcal{F}) \) as autonomous quotient. If we consider the left \(D \)-module \(P = M \oplus N \), we then have \(t(P) \cong N \) and \(P/t(P) \cong M \) and the previous problem can be reduced to the case where we only consider the extensions of \(t(P) \) by \(P/t(P) \) for a finitely presented left \(D \)-module \(P \).

Let \(L \in D^{m \times l} \) be a matrix with entries in a noetherian domain \(D \) and let us consider the finitely presented left \(D \)-module \(P = D^{1 \times l}/(D^{1 \times m} \ L) \). As shown in [6, 18] and implemented in [7], computing the left \(D \)-module \(\text{ext}_D^1(N, D) \), where \(N = D^m/(L \ D^1) \), gives us a matrix \(L' \in D^{m' \times l} \) satisfying:

\[
\begin{cases}
 t(P) = (D^{1 \times m'} \ L')/(D^{1 \times m} \ L), \\
p/t(P) = D^{1 \times l}/(D^{1 \times m'} \ L').
\end{cases}
\]

We denote by \(\epsilon : D^{1 \times m} \rightarrow P \) (resp., \(\epsilon' : D^{1 \times m} \rightarrow P/t(P) \)) the canonical projection onto \(P \) (resp., \(P/t(P) \)). In particular, we have the relation \(\epsilon' = \tau \circ \epsilon \), where \(\tau \) denotes the canonical projection \(P \rightarrow P/t(P) \) (see (16) with \(M = P \)).
Corollary 10. Every class of extensions of $t(P)$ by $P/t(P)$ is defined by means of the left D-module $E = D^{1 \times (l + m')}/(D^{1 \times (m' + m + n')} Q)$, where Q has the form

$$Q = \begin{pmatrix} L' & -T \\ 0 & L'' \end{pmatrix} \in D^{(m'+m+n') \times (l+m')}$$ \hspace{1cm} (19)$$

(with L'' (resp., L'_2) playing the role of R'' (resp., R'_2) in (17)) and T is an element of the abelian group:

$$\Omega = \left\{ A \in D^{m' \times m'} \mid \exists B \in D^{n' \times (m+n')} : L'_2 A = B \begin{pmatrix} L'' \\ L'_2 \end{pmatrix} \right\}.$$ \hspace{1cm} (20)$$

Finally, the equivalence classes of the extensions of $t(P)$ by $P/t(P)$ only depend on the residue classes $\varepsilon(T)$ in the following abelian group where i as defined in (9):

$$\Omega \left(L' D^{l \times m'} + D^{m' \times (m+n')} \begin{pmatrix} L'' \\ L'_2 \end{pmatrix} \right) = \varepsilon(t_D(P/t(P), t(P))).$$ \hspace{1cm} (21)$$

If \mathcal{F} is an injective left D-module and $\ker \mathcal{F}(L) \cong \text{hom}_D(P, \mathcal{F})$, then Corollaries 9 and 10 give a parametrization of the equivalence classes of linear systems $\ker \mathcal{F}(Q) \cong \text{hom}_D(E, \mathcal{F})$ which admit $\ker \mathcal{F}(L')$ as a parametrizable subsystem and $\ker \mathcal{F}(L'' L'_2^T)$ as an autonomous quotient.

Example 11. Let us consider the differential time-delay system ([14])

$$\begin{cases} \dot{y}_1(t) - \dot{y}_2(t - 2h) + \alpha \dot{y}_3(t - h) = 0, \\
\dot{y}_1(t - 2h) - \dot{y}_2(t) + \alpha \dot{y}_3(t - h) = 0,
\end{cases}$$ \hspace{1cm} (22)$$

where $\alpha \in \mathbb{R}$ and h is a strictly positive real number. We denote by $D = \mathbb{Q}(\alpha) [\partial, \delta]$ the commutative polynomial ring of differential time-delay operators, the matrix

$$L = \begin{pmatrix} \partial & -\partial \delta^2 & \alpha \partial^2 \delta \\
-\partial \delta^2 & \partial & \alpha \partial^2 \delta \end{pmatrix} \in D^{2 \times 3},$$

and the D-module $P = D^{1 \times 3}/(D^{1 \times 2} \ L)$. Using a constructive algorithm developed in [6, 17] and implemented in [7], we get $L' = R \in D^{2 \times 1}$ defined by (10). We can check that $\ker_D(L') = 0$ and $L = L'' L'$, where $L'' = S \in D^{2 \times 2}$ is defined by (10). Hence, we obtain $t(P) \cong D^{1 \times 2}/(D^{1 \times 2} \ L'')$. Now, the equivalence classes of extensions of $t(P)$ by $P/t(P)$ are in 1-1 correspondence with the elements of the D-module $\text{ext}^3_D(P/t(P), t(P))$. Using Examples 5 and 8, we obtain that the two non-trivial equivalence classes of extensions are defined by the D-modules E_1 and E_2 given in Example 8. They respectively correspond to the following systems:

$$\begin{cases} z_1(t) + z_2(t) = 0, \\
z_2(t) + z_2(t - 2h) \\
-(\alpha \ z_3(t - h) + z_4(t)) = 0, \\
\dot{z}_4(t) - \dot{z}_5(t) = 0, \\
\dot{z}_4(t - 2h) - \dot{z}_5(t) = 0,
\end{cases}$$

$$\begin{cases} z_1(t) + z_2(t) = 0, \\
z_2(t) + z_2(t - 2h) \\
-(\alpha \ z_3(t - h) + z_5(t)) = 0, \\
\dot{z}_4(t) - \dot{z}_5(t) = 0, \\
\dot{z}_4(t - 2h) - \dot{z}_5(t) = 0.
\end{cases}$$
The trivial class of extensions of \(t(P) \) by \(P/t(P) \) can be defined by the system:

\[
\begin{align*}
 z_1(t) + z_2(t) &= 0, \\
 z_2(t) + z_2(t - 2h) - \alpha \dot{z}_3(t - h) &= 0, \\
 \dot{z}_4 - \dot{z}_5(t) &= 0, \\
 \dot{z}_4(t - 2h) - \dot{z}_5(t) &= 0.
\end{align*}
\]

Hence, the three systems admit the same parametrizable subsystem and the same autonomous quotient as (22).

Remark 12. The matrix \(Q \) defined by (19) with \(T = I_{m'} \in \Omega \) was used in [20, 21] to parametrize the \(\mathcal{F} \)-solutions of the system \(\ker \mathcal{F}(L') \) in terms of the \(\mathcal{F} \)-solutions of \(\ker \mathcal{F}(L') \) and \(\ker \mathcal{F}((L')^T) \). We first need to solve the following autonomous homogeneous linear system \(\ker \mathcal{F}((L')^T) \) corresponding to \(\text{hom}_D(t(P), \mathcal{F}) \):

\[
\begin{align*}
 L'' \theta &= 0, \\
 L'_2 \theta &= 0.
\end{align*}
\]

Then, we need to solve the inhomogeneous system \(L' \eta = \theta \), i.e., find a particular solution \(\eta^* \in \mathcal{F}' \) of \(L' \eta^* = \theta \) and the general solution of the homogeneous system \(L' \eta = 0 \) associated with \(\text{hom}_D(P/t(P), \mathcal{F}) \). As the subsystem \(\text{hom}_D(P/t(P), \mathcal{F}) \) of \(\text{hom}_D(P/t(P), \mathcal{F}) \) is parametrizable, we can compute a matrix \(Q' \in D'^{l \times k} \) satisfying \(\ker \mathcal{F}(L') = Q' \mathcal{F}^k \) whenever \(\mathcal{F} \) is an injective left \(D \)-module ([6, 15, 19, 25]). Then, the solution of \(L \eta = 0 \) has the form \(\eta = \eta^* + Q' \xi \), for arbitrary \(\xi \in \mathcal{F}^k \). We refer to [21] for applications to variational and optimal control problems.

Next, we have a direct consequence of Remark 12. For more details, see [22].

Proposition 13. The exact sequence \(0 \rightarrow t(P) \xrightarrow{\epsilon} P \xrightarrow{\pi} P/t(P) \rightarrow 0 \) splits iff \(\epsilon(I_{m'}) = 0 \), i.e., iff there exist \(X \in D'^{l \times m'} \), \(Y \in D'^{m' \times m} \) and \(Z \in D'^{m \times n'} \) satisfying:

\[
I_{m'} = L' X + Y L'' + Z L'_2 \quad \Leftrightarrow \quad L' = L' X L' = Y L.
\]

Remark 14. As shown in [20, 21], Proposition 13 gives a particular solution \(\eta^* \in \mathcal{F}' \) of the inhomogeneous system \(L' \eta = \theta \), where \(\theta \in \mathcal{F}' \) is a general solution of the system (23): using (24), we get \(\theta = L' X \theta + Y L'' \theta + Z' L'_2 \theta = L' (X \theta) \) as \(\theta \) satisfies (23). If \(\mathcal{F} \) is an injective left \(D \)-module, using Remark 12, we then obtain that the elements of \(\ker \mathcal{F}(L) \) have the form \(\eta = X \theta + Q' \xi \), for all \(\xi \in \mathcal{F}^k \).

The left \(D \)-module \(P/t(P) = D'^{l \times l}/(D'^{l \times m'} L') \) is stably free, i.e., satisfies \(P/t(P) \oplus D'^{l \times s} \cong D'^{l \times r} \) for non-negative integers \(r \) and \(s \) ([23]), iff there exists \(X \in D'^{l \times m'} \) such that \(L' X L' = L' ([17]) \). Hence, if \(P/t(P) \) is stably free, then (24) holds with \(Y = 0 \). In particular, if \(D = \mathbb{k}[t][\partial] \) is the Weyl algebra (\(k \) a field of characteristic 0) or a left principal ideal domain (e.g., \(K[\partial] \), \(K \) a differential field), then every torsion-free left \(D \)-module is stably free and, in particular, \(P/t(P) \) for any finitely presented left \(D \)-module \(P \). Hence, we find again Kalman’s result ([11]) and its different generalizations ([10, 16]) described in the introduction.
Bibliography

