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Global Pinning
Controllability of
Complex Networks∗

M. Porfiri† and M. di Bernardo‡

1 Introduction
Pinning-control has been proposed in the literature [7, 16, 12, 3, 13, 17, 11] as a
viable strategy to control lattices and networks of coupled dynamical systems onto
some desired common reference trajectory. The general idea behind pinning control
is to use a feedback control input on just a limited subset of the whole dynamical
system, that is, to actively control only a few network nodes (the so-called pinned
sites or reference sites). Specifically, a direct control action is active only on such
pinned nodes, and is propagated to the rest of the network through the coupling
among the oscillators, represented by edges in the network.

It has been shown that such a strategy is effective in taming the dynamics
of networks of linear and nonlinear oscillators with different topological features.
Some proofs of local asymptotic stability have been given in the case where the de-
sired asymptotic trajectory is an equilibrium point [12] for the dynamical system. A
particularly challenging open problem is to provide sufficient conditions for global
pinning-controllability of complex networks. A strategy for the numerical explo-
ration of pinning-controllability based on the master-stability function is presented
in [15].

The aim of this paper is to establish sufficient conditions for global pinning-
controllability of a generic network of oscillators to some desired solution, not neces-
sarily an equilibrium point. We consider a complex dynamical system comprised of
a number of identical chaotic oscillators coupled via a time-invariant bidirectional
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communication network. The reference trajectory is generated by an exogenous
oscillator identical to the network oscillators. Pinned nodes in the network are cou-
pled to the exogenous node through a linear state feedback. Pinned nodes may be
viewed as slave systems of the reference node, that consequently behaves as a master
oscillator. The oscillators’ network is globally pinning-controlled if the oscillators
globally synchronize, that is, if for any initial condition the oscillators asymptoti-
cally track the reference trajectory. Note that, in contrast to the synchronization
problem often studied in the literature, see for example [2] and references therein,
such reference trajectory is supposed to be known and chosen to achieve some de-
sired control objective. We cast the global synchronization problem into a global
asymptotic stability problem by describing the system time evolution in terms of the
error dynamics. By using Lyapunov-stability theory and algebraic graph theory, we
establish sufficient conditions for global synchronization. The conditions derived in
this paper involve the network topological structure, the dynamics of an individual
oscillator, and the structure of the state feedback control action. One of the main
contributions of this work is to establish a simple algebraic condition for global
pinning controllability based on the fraction of pinned nodes, the relative network
algebraic connectivity, the coupling strength among the network oscillators, and the
gain of the feedback control action. We show that as the fraction of pinned nodes
increases, smaller feedback gains are needed for global pinning-control. We also
prove that, for a connected network, even for a limited number of pinned nodes,
global pinning-controllability can be achieved by properly selecting the coupling
strength and the feedback gain.

Our notation throughout is standard. Z+ refers to the set of nonnegative
integers. ‖ · ‖ refers to the Euclidean norm in Rm or corresponding induced norm in
Rm×m, with m ∈ Z+. The vector in Rm that consists of all unit entries is denoted
1m = [1, . . . , 1]T , and ⊗ is the standard Kronecker product. Im is the m×m identity
matrix. The symmetric part of a matrix B ∈ Rm×m is indicated with symB, that
is, symB = 1

2 (B +BT ). The smallest and largest eigenvalues of a symmetric matrix
A ∈ Rm×m are indicated with λmin(A) and λmax(A), respectively. The algebraic
spectrum of A, say {λi(A)}m

i=1, is ordered so that λmin(A) = λ1(A) ≤ λ2(A) ≤ · · · ≤
λm−1(A) ≤ λm(A) = λmax(A). The unit norm eigenvector of A corresponding to
λi(A) is called vi(A).

2 Problem Statement
We consider a dynamical system consisting of N identical oscillators interconnected
pairwise via a time-constant information network. Graph theory is used to model
the oscillators’ communication network, with vertices representing individual os-
cillators and edges representing active communication links. All communication
is bidirectional, so that the corresponding graph is undirected. In addition, all
communication links are equal, so that the corresponding graph is unweighted or
unity-weighted. A connected network is one in which a path exists between each
pair of vertices in the graph. We extensively use the Laplacian matrix for char-
acterizing the effects of the communication network. The Laplacian is defined as
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L = D − A, where A is the adjacency matrix for the graph and D is the degree
matrix. The adjacency matrix A is a zero-one matrix whose entries are nonzero
when they correspond to interconnected nodes. The degree matrix D is a diagonal
matrix whose diagonal entries equal the number of edges incident with the corre-
sponding nodes. Defined in this manner, L is symmetric and positive semidefinite.
In addition, the vector 1N is in the null space of L. The total number of zero
eigenvalues of L equals the number of connected components of the graph [6].

The time evolution of the ith oscillator is described by

ẋi(t) = f(xi(t))− σB

N∑

j=1

lijxj(t) + ui(t) (1)

xi(t0) = xi0, i = 1, . . . N, t ≥ t0

where t0 ∈ R is the initial time; xi(t) ∈ Rn is the state of the ith oscillator; xi0 ∈ Rn

is the initial condition of the ith oscillator; f : Rn → Rn describes the oscillators’
individual dynamics; B ∈ Rn×n is the inner linking matrix that describes the cou-
pling between the states of coupled oscillators; σ > 0 is a control parameter that
partially assigns coupling strength between oscillators; ui(t) is the control input to
oscillator i; and scalars lij ’s are the elements of the graph Laplacian L.

We further assume that the control inputs are applied only to selected pinned
nodes in the network, and that they are generated by a sole state linear feedback
law with respect to a reference trajectory s(t), satisfying an individual oscillator’s
dynamics, that is, ṡ(t) = f(s(t)). Thus, we set ui(t) = piKei(t), where pi is equal
to one for pinned nodes and zero otherwise, and K is the feedback gain matrix.
We indicate with r the number of pinned nodes, that is, the number of nonzero
diagonal entries of P := Diag[p1, p2, . . . , pN ]. The vector ei describes the error of
the oscillator i in tracking the reference signal s, that is ei(t) = s(t)− xi(t).

We collect all the states of the system in the nN dimensional vector x(t) =[
xT

1 (t), . . . , xT
N (t)

]T ∈ RnN , and we rewrite the system of equations (1) using the
Kronecker product as

ẋ(t) = [1N ⊗ f ](x(t))− σL⊗Bx(t) + P ⊗K(1N ⊗ s(t)− x(t)) (2)

where [1N ⊗ f ] (x(t)) =
[
fT (x1(t)), . . . , fT (xN (t))

]T and P = Diag [p1, . . . , pN ].
We note that the matrix P is diagonal and positive semidefinite.

3 Global Pinning-Controllability
We collect the error components ei(t) into the error vector e(t) = 1N ⊗ s(t)− x(t)
and formulate the control problem defined in (2) as an asymptotic stability problem
about the origin for the system

ė(t) = 1N ⊗ f(s(t))− [1N ⊗ f ](x(t))− σL⊗Be(t)− P ⊗Ke(t) (3)

where we have used the fact that 1N is in the null space of the Laplacian, that is,
L1N = 0. Following [9], we define the matrix function Fξ,ξ̃ for any ξ, ξ̃ ∈ Rn by

f(ξ)− f(ξ̃) = Fξ,ξ̃(ξ − ξ̃) (4)
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We assume that Fξ,ξ̃ is bounded in Rn ×Rn, that is, we assume that there exists a

positive constant α such that for any ξ, ξ̃ ∈ Rn

‖Fξ,ξ̃‖ ≤ α (5)

Condition (5) applies to a large variety of chaotic oscillators, see for example [9]
and the examples therein. We use condition (5) to enforce global synchronization
of the oscillator network to the reference trajectory. Whereas milder conditions can
be used to assess local synchronization, see for example [15], in this paper we retain
the inherent system nonlinearities and we focus on global synchronization.

Using equation (4), the error dynamics (3) is rewritten as

ė(t) = F(e(t), t)e(t)− (σL⊗B + P ⊗K)e(t) (6)

where
F(e(t), t) = Diag

[
Fs(t),s(t)−e1(t), . . . , Fs(t),s(t)−eN (t)

]
(7)

Definition 1. We say that (1) is globally pinning-controllable if the error dynamical
system in (6) is globally asymptotically stable about the origin.

Global asymptotic stability of (6) is here studied using Lyapunov stability
criteria, see for example [10]. The following proposition establishes a sufficient
condition for global stability.

Proposition 2. If the feedback gain matrix K, the inner linking matrix B, and the
coupling strength σ are chosen such that for every t ≥ t0, and for every y1, . . . , yN ∈
Rn

λi(y, t) < −µ, i = 1, . . . , nN (8)

where y =
[
yT
1 , . . . , yT

N

]T , µ > 0, {λi(y, t)}nN
i=1 are the eigenvalues of the matrix

H(y, t) defined by

H(y, t) = D(y, t)− 2(σL⊗ symQB + P ⊗ symQK) (9)

with Q positive definite symmetric matrix in Rn×n, and

D(y, t) = 2Diag[symQFs(t),s(t)−y1 , . . . , symQFs(t),s(t)−yN
] (10)

Then, the dynamical system (6) is globally exponentially stable about the origin,
implying that the network described by (1) is globally pinning-controllable.

Proof. We choose a quadratic candidate Lyapunov function

V (e) = eT (IN ⊗Q)e (11)

where Q ∈ Rn×n is symmetric and positive definite. The time derivative of V (e(t))
along the trajectory of the error dynamical system (6) is

V̇ (e(t)) = (ėT (t)(IN ⊗Q)e(t) + eT (t)(IN ⊗Q)ė(t)) = eT (t)H(e(t), t)e(t) (12)
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Since H is a symmetric matrix, all its eigenvalues {λi}nN
i=1 are real. By imposing

condition (8), we find
V̇ (e(t)) < −µ‖e(t)‖2 (13)

Equation (13) implies global exponential stability of (6), see for example [10]. There-
fore, (1) is globally pinning-controllable.

In what follows, we specialize Proposition 2 for the case where the inner linking
matrix B and feedback gain matrix K are related by the following condition

symQK = κsymQB (14)

for some κ positive constant and Q positive definite symmetric matrix in Rn×n.
Condition (14) implies that the control action on the pinned nodes replicates the
structure of the inner linking among the oscillators. In most of the literature on
pinning-control, the stronger condition B = κK is used, see for example [3, 11, 15].
Our claims reported in what follows do not require direct relations between the
skew parts of the matrices QB and QK.

3.1 Selection of Pinned Nodes

The following claim builds on Proposition 2 to establish a sufficient condition for
global-pinning controllability that involves the network topology, the location of
pinned-nodes, the coupling strength, and the feedback gain.

Corollary 3. If, for some Q positive definite symmetric matrix in Rn×n, condition
(14) is satisfied, symQB is a positive definite matrix and

λmin(σL + κP )λmin(symQB) > α‖Q‖, (15)

where the positive constant α satisfies (5), then (1) is globally pinning-controllable.

Proof. We choose the candidate Lyapunov function in (11). Using condition (14),
the symmetric matrix H(y, t) in (9) becomes

H(y, t) = D(y, t)− 2(σL + κP )⊗ (symQB) (16)

where D is defined in (10). The largest eigenvalue of H(y, t) can be bounded using
Weyl’s inequality, see for example Theorem 8.4.11 of [1],

λmax(H(y, t)) ≤ λmax(D(y, t)) + λmax(−2(σL + κP )⊗ (symQB)). (17)

The first summand in the right hand side of equation (17) can be bounded as
follows

λmax(D(y, t)) ≤ max
i=1,...N

|λi(D(y, t))| ≤ ‖D(y, t)‖. (18)

Substituting (10) into (18), and using condition (5), we find

λmax(D(y, t)) ≤ 2α‖Q‖, (19)
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for any y ∈ RnN .
Now, we consider the second term in (17). Since symQB is positive definite

and σL + κP is positive semidefinite, being the sum of two positive semidefinite
matrices, using Proposition 7.1.10 of [1], we find

λmax(−2(σL + κP )⊗ (symQB)) = −2λmin(σL + κP )λmin(symQB). (20)

Using (19) and (20) in equation (17), we find that under condition (15) the
hypotheses of Proposition 2 are satisfied with

µ = −2α‖Q‖+ 2λmin(σL + κP )λmin(symQB). (21)

We refer to the positive parameter µ in (21) as the synchronization strength.
Indeed, from equation (13), we note that µ/‖Q‖ is an upper bound for the exponen-
tial rate of V (e(t)), where the Lyapunov function is defined in (11). Corollary 3 can
be used to quantitatively investigate the optimal selection of pinned nodes. Indeed,
the quantity λmin(σL + κP ) depends not only on the feedback gain κ, but also
on the location of pinned nodes through the matrix P . An optimization problem
similar to those analyzed in [5] for maximizing the algebraic connectivity of graphs
can be formulated.

We further note that, according to equation (15), simultaneously increasing
the coupling strength σ and the pinning-control strength κ positively affects the
network synchronization. If condition (5) is relaxed, synchronization can be lost as
σ and κ are simultaneously increased above threshold values determined using the
so-called master stability function, see for example [15].

3.2 Effects of Network Topology

The following claim builds on Corollary 3 to establish a simpler sufficient condition
for global pinning-controllability that takes into account only the connectivity of
the communication network, the number of pinned nodes, the coupling strength,
and the feedback gain.

Corollary 4. If for some Q positive definite symmetric matrix in Rn×n condition
(14) is satisfied and symQB is a positive definite matrix, and the feedback gain κ
satisfies

σκ
(

λ2(L)
N

)

σ
(

λ2(L)
r

)
+ κ

> α‖Q‖ 1
λmin(symQB)

(22)

then (1) is globally pinning-controllable.

Proof. We show that under the conditions of the claim, inequality (15) is satis-
fied. To this aim, we use the the recent perturbation bounds for eigenvalues of [8].
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Without lack of generality, we assume that the first r nodes are pinned-controlled.
First, by applying Weyl’s inequality we find that

λmin(σL + κP ) ≥
r∑

i=1

λmin

(σ

r
L + κπiπ

T
i

)
. (23)

Next, by applying Theorem 2.1 in [8] to σ
r L + κπiπ

T
i , we obtain

λmin

(σ

r
L + κπiπ

T
i

)
≥ φ(σ, κ) (24)

where the positive function φ is defined by

φ(σ, κ) =
1
2

(
σ

r
λ2(L) + κ−

√(σ

r
λ2(L) + κ

)2

− 4σκ

rN
λ2(L)

)
(25)

Here, we have used the fact that ‖πi‖ = 1, that λmin(L) = 0, and that v1(L) =
1√
N

1N . We note that for positive σ and κ

φ(σ, κ) ≥ σκλ2(L)
(σλ2(L) + rκ)N

. (26)

Substituting (24) into (23), and using (26), we find

λmin(σL + κP ) ≥
σκ

(
λ2(L)

N

)

σ
(

λ2(L)
r

)
+ κ

. (27)

Under condition (22), Corollary 3 applies, and the claim follows.

Corollary 4 does not provide indications on how to select the most appropriate
pinning nodes for achieving global-pinning controllability. Nevertheless, it does
provide useful insights into the influence of the network topology on global pinning-
controllability. To better illustrate the influence of the network topology, we name
the left hand side of equation (22) Φ(σ, κ), that is, we set

Φ(σ, κ) =
σκ

(
λ2(L)

N

)

σ
(

λ2(L)
r

)
+ κ

. (28)

We also introduce the so-called network relative connectivity χ = λ2(L)/N and
the fraction of pinned nodes ρ = r/N . The network relative connectivity χ is
a nonnegative parameter bounded by 1, since λ2(L) is less than or equal to the
minimum vertex degree in the graph [4]. In terms of these parameters, (28) can be
conveniently rewritten as the twice the harmonic mean of χσ and ρκ, that is

Φ(σ, κ) =
(

1
ρκ

+
1

σχ

)−1

. (29)
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Equation (29) shows that as the fraction of pinned nodes increases along with
the network relative connectivity, smaller feedback gains and coupling strengths
may be sufficient for global pinning-control. In addition, the network relative con-
nectivity is greater than zero if and only if the graph is connected. Therefore, a
necessary condition for applying Corollary 4 is that the graph is connected. Never-
theless, connectedness may not be a sufficient condition for pinning-controlling the
network according to Corollary 4. Indeed, once the coupling strength σ among the
oscillators is prescribed, the largest value that Φ(σ, κ) can achieve in the limit of
κ →∞ is equal to σχ. Thus, if λmin(symQB)σχ ≤ α‖Q‖, Corollary 4 does not pro-
vide a finite value for the feedback gain κ for global pinning-controllability. On the
other hand, Corollary 4 establishes that if the network topology is connected then
global pinning-controllability can be always made possible by increasing the cou-
pling strength among the oscillators σ. This implies that even a single pinned node
may be sufficient to synchronize the whole network onto the reference trajectory,
provided that the oscillators are strongly coupled.

If the conditions of Corollary 4 are fulfilled, the synchronization strength µ in
equation (21 is bounded by

µ ≤ −2α‖Q‖+ 2Φ(σ, κ)λmin(symQB), (30)

where we used equation (27) and definition (28). Equation (30) shows the signifi-
cance of the network relative connectivity, and of the fraction of pinned nodes on
the synchronization strength.

4 Illustration
To illustrate global pinning-controllability of oscillators coupled through a commu-
nication network, we consider a set of N chaotic Chua’s oscillator, see for example
[14]. The state xi of the ith oscillator is comprised of three components, that is
n = 3. We write xi = [ξi1, ξi2, ξi3]T , where ξi1, ξi2, and ξi3 are scalar quantities.

For a Chua’s oscillator the nonlinear function f(ξ) in (1) is given by

f(ξ) =




a(ξ2 − ξ1 − h(ξ1))
ξ1 − ξ2 + ξ3

−bξ2


 (31)

where ξ = [ξ1, ξ2, ξ3]T ∈ Rn, a > 0, b > 0, and the nonlinear scalar function h has
the form

h(ξ1) = m1ξ1 +
1
2
(m0 −m1)(|ξ1 + 1| − |ξ1 − 1|) (32)

with m0 < m1 < 0. We define

h(ξ1)− h(ξ̃1) = wξ1,ξ̃1
(ξ1 − ξ̃1) (33)

where wξ1,ξ̃1
depends on ξ1 and ξ̃1 and is bounded by m0 ≤ wξ1,ξ̃1

≤ m1, see for
example [9]. Therefore the matrix function Fξ,ξ̃ in (4) can be expressed as

Fξ,ξ̃ = A + M(wξ1,ξ̃1
) (34)
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where

A =



−a a 0
1 −1 1
0 −b 0


 , M(wξ1,ξ̃1

) =



−awξ1,ξ̃1

0 0
0 0 0
0 0 0


 (35)

The norm of the matrix M(wξ1,ξ̃1
) is bounded by a|m1|. Therefore, using the

triangle inequality, the norm of the matrix Fξ,ξ̃ is bounded by ‖A‖ + a|m1|, and
the constant α in equation (5) may be chosen to be equal to ‖A‖+ a|m1|. Despite
being very simple, this bound may be relatively conservative and consequently may
yield conservative estimates for the coupling strength σ and the feedback gain κ
needed for global pinning-controllability, see for example equation (22). Therefore,
we numerically determine the positive bounding constant α in (5) through

α = max
ε∈[m0,m1]

‖A + M(ε)‖ (36)

Following [9], we select a = 9.81, b = 13.441, m0 = −1.217, and m1 = −0.648.
Substituting these numerical constants in equation (36), we find α = 17.98. We also
assume that the matrices B, K, and Q are equal to the identity matrix. Assuming
that B = K = I3 implies that beyond fulfilling equation (14), we further impose
that the internal coupling and the pinning-control act in the same way on all the
oscillators’ states.

We consider a set of N = 50 representative Chua oscillators behaving chaot-
ically. Oscillators are coupled through a random graph where the probability of
existence of each edge is equal to 0.2. We ascertained that the graph is connected
and we computed its algebraic connectivity λ2(L) to be 3.70. Therefore, the relative
connectivity χ is equal to 3.70/50 = 0.074.

Assuming that the coupling strength σ is equal to 50 and that only 5 nodes are
pinned, that is, r = 5, Corollary 4 does not yield a finite value for the feedback gain
κ to guarantee global pinning-controllability of the network, since σχ ≤ α. In order
to apply Corollary 4, σ has to be made far larger than 50, approximately 250. Using
Corollary 3, we numerically find that the network is globally pinning-controllable
for κ = 250 if the nodes with highest degree are pinned. Degrees of pinned nodes
are 18, 16, 14, 14, and 14. In this case, λmin(σL+κP ) = 18.44 that is larger than α.
In Figure 1, we report λmin(σL + κP ) for a wide range of coupling strength σ and
feedback gain κ, in case of pinning nodes with highest degree. Figure 1 shows that
global pinning-controllability can be obtained with lower values of feedback gain κ,
by increasing the coupling strength among the oscillators σ. Through numerical
experiments we also find that by randomly selecting pinned nodes in the network,
the quantity λmin(σL + κP ) generally decreases with respect to the pinned nodes’
section described above.

Figure 2 shows the time evolution of the error dynamics ‖e(t)‖. We note the
exponential rate of decay of the error dynamics.

5 Conclusions
We have defined the concept of global pinning-controllability, and we have found
conditions to guarantee such a property in general networks of dynamical systems.
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Figure 1. Plot of λmin(σL + κP ) as a function of σ and κ, in case of
pinning nodes with highest degree. Dashed line represents the contour λmin(σL +
κP ) = α. In the top-right region global pinning-controllability is achieved.
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Figure 2. Time evolution of the error dynamics.

The influence of the structural properties of the oscillator network, the location
and number of pinned nodes, and the individual oscillators’ dynamics on global
pinning-controllability has been investigated. A manageable formula for assessing
pinning-controllability from the fraction of pinned nodes and the network algebraic
connectivity has been proposed. Numerical examples were used to illustrate the
viability of the conditions presented in the paper. In particular, we considered
networks of identical Chua’s oscillators, often used in the literature as a testbed
problem for control and synchronization of networks.
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