Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1996, Article 1
9 February 1996

ISSN 1073-0486. MIT Press Journals, 55 Hayward St., Cambridge, MA
02142 USA; (617)253-2889; journals-orders@mit.edu, journals-info@mit.edu.
Published one article at a time in I¥TEX source form on the Internet. Pag-
ination varies from copy to copy. For more information and other articles
see:

o http://www-mitpress.mit.edu/jrnls-catalog/chicago.html

hitp://www. cs.uchicago.edu/publications/cjtcs/
e gopher.mit.edu

e gopher.cs.uchicago.edu

anonymous ftp at mitpress.mit.edu

anonymous ftp at cs.uchicago.edu

Vardi Rank Predicates vs. Progress Measures (Info)

The Chicago Journal of Theoretical Computer Science is abstracted or in-
dexed in Research Alert®), SciSearch®), Current Contents®) /Engineering
Computing & Technology, CompuMath Citation Index®).

(©1996 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics

in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Martin Abadi
Pankaj Agarwal
Eric Allender
Tetsuo Asano
Laszlé Babai
Eric Bach
Stephen Brookes
Jin-Yi Cai
Anne Condon
Cynthia Dwork
David Eppstein
Ronald Fagin
Lance Fortnow
Steven Fortune

Editors:

Greg Frederickson
Andrew Goldberg
Georg Gottlob
Vassos Hadzilacos
Juris Hartmanis
Maurice Herlihy
Stephen Homer
Neil Immerman
TParis Kanellakis
Howard Karloff
Philip Klein
Phokion Kolaitis
Stephen Mahaney
Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

Chicago Journal of Theoretical Computer Science

]

John Mitchell
Ketan Mulmuley
Gil Neiger
David Peleg
Andrew Pitts
James Royer
Alan Selman
Nir Shavit
Eva Tardos
Sam Toueg
Moshe Vardi
Jennifer Welch
Pierre Wolper

1996-1

Rank Predicates vs. Progress Measures in
Concurrent-Program Verification

Moshe Y. Vardi
9 February, 1996

Abstract
This note describes a direct relationship between rank predicates
and progress measures in concurrent-program verification.

1 Introduction

In [Var87, Var89, Var91], we presented an automata-theoretic framework that
unified several trends in the area of concurrent-program verification. At the
foundation of that framework is the observation (due to G. Plotkin) that
recursive w-automata can express all X1 sets of computations. Using this ob-
servation it was shown how to extend the helpful-directions methodology of
[GFMdRS85, LPS81] to verification with respect to all 3] fairness conditions
and TI1 correctness conditions. The technical notion underlying this method-
ology is that of rank predicate, which defines some ranking of program states
by means of elements of some well-founded sets.

Another approach to concurrent-program verification was pursued by
Klarlund. The intuition behind his approach is described by the following
paraphrase of ideas from [KK91, Kla90, Kla91, Kla92, KS93, Kla94]:

A progress measure is a mapping on program states that quanti-
fies how close each state is to satisfying a property about infinite
computations. On every program transition the progress measure
must change in a way ensuring that the computation converges
toward the property.

We show that there is a direct relationship between rank predicates and
progress measures.

1

Chicago Journal of Theoretical Computer Science 1996-1

Vards Rank Predicates vs. Progress Measures §2.2

2 Background

2.1 Languages and Automata

An w-word w is a function w:w — w. (One can view w as an w-word over
the alphabet {7 | 3j s.t. w(j) = i}.) In this paper, a language is a set of
w-words, i.e., a subset of w*”. A language L is X1 if it is the projection of an
arithmetical relation, i.e., there is an arithmetical relation R C w* x w* such
that L = {w | Ju s.t. R(w,u) }. A language L is II] if its complement is a
Y1 language. (See [Rog67] for basic concepts in recursion theory.)

A table T is a tuple (S, S% «), where S is a (possibly countably infinite)
set of states, SY C S is the set of starting states, and @ C S x w x S is
the transition relation. T is said to be recursive in case S, S°, and a are
recursive. A run r of T on the word w is a sequence r:w — S such that
r(0) € S and (r(i),w(i),r(i + 1)) € a for all 7 > 0.

Automata are tables with acceptance conditions. A Wolper automaton
has a vacuous acceptance condition, so it is just a table T' = (S, 5% «). It
accepts a word w if it has a run on w. A Biichi automaton A is a pair (T, F),
where T' = (5,5% a) is a table and F C S. A accepts a word w if there is
a run r of 7' on w such that for infinitely many i’s we have r(i) € F. A is
recursive if T" and F' are recursive. The language accepted by an automaton
A, consisting of all w-words accepted by A, is denoted L, (A).

The following theorem, which follows easily from Kleene’s Normal Form
Theorem, asserts that Wolper automata and Biichi automata have the same
expressive power: they both can define all ¥} languages.

Theorem 2.1 ([Var87, Var89, Var91]) Let L be a language. The follow-
ing are equivalent:

o L is a X} language.
o There is a recursive Wolper automaton A such that L = L,(A).

e There is a recursive Biichi automaton A such that L = L,(A).

2.2 Program Verification

Rather than restrict ourselves to a particular programming language, we use
here an abstract model for nondeterministic programs (we model concurrency
by nondeterminism). A program P is a triple (W, I, R), where W is a set

2

Chicago Journal of Theoretical Computer Science 1996-1

Vardi Rank Predicates vs. Progress Measures §3

of program states, I C W is a set of initial states, and R C W? is a binary
transition relation on W. A computation is a sequence o in W such that
0(0) € I and (0(i),0(i + 1)) € R for all i > 0.! The set of computations of
P is denoted by L, (P). Given that programs are supposed to be effective,
we require that W, R, and [are recursive sets.

We assume some means of specifying fairness and correctness. The fair-
ness condition is used to specify what computations are considered to be
“fair,” i.e., the scheduling of nondeterministic choices is not too patholog-
ical. Thus, only computations that satisfy the fairness condition need be
considered when the program is verified. The correctness condition is used
to express the performance required of a computation; in other words, this is
what the user demands of the computation. Instead of focusing on concrete
specification languages, we can view the fairness and correctness conditions
abstractly as sets of w-words.

Given a fairness condition ® and a correctness condition ¥, the program
P is correct with respect to (®,W) if every computation of P that satisfies
® also satisfies W, that is, if L,(P) N ® C W. Our approach is applicable
when the fairness condition is a ¥} language and the correctness condition
is a I language. In that case, the intersection of fairness and incorrectness,
i.e., ® N, is a X} language, and, by Theorem 2.1, can be expressed by a
recursive Biichi automaton or by a recursive Wolper automaton. Thus, let
Apw = (5,50, a, F) be a recursive automaton such that L,(Agg) = PN,
then P is correct with respect to (®, ¥) precisely when L, (P) N L, (Ag,v) is
empty.

3 Rank Predicates

The crux of the approach is to define a rank predicate on pairs consisting of
program states and automata states.

Theorem 3.1 ([Var87, Var89, Var91]) Let P = (W, 1, R) be a recursive
program, let ® be a X} language, and let V be a 11} language. Let Agpy =
(S, S0, v, F') be a Biichi automaton such that L,(Agy) = ®NW. Then P is

correct with respect to (P, W) iff there exists an ordinal k and a rank predicate
p C 2WXSXK sych that the following holds:

'For simplicity we assume that the program has only infinite computations. A termi-
nating computation is assumed to loop forever in its last state.

3

Chicago Journal of Theoretical Computer Science 1996-1

Vardi Rank Predicates vs. Progress Measures §4

o forallu €I andp € Sy, we have that p(u,p, k) holds,

o for all u,v € W and p,q € S, if p(u,p,) holds, (u,v) € R, and
(p,u,q) € a, then p(v,q,v) holds for some v < u, and

o for allu,v € W and p,q € S, if p(u,p, p) holds, (u,v) € R, (p,u,q) €
a, and p € F, then p(v,q,v) holds for some v < p.

The conditions in the theorem get simpler if we assume that Agy is a
Wolper automaton, i.e., when we take F' = S.

Corollary 3.2 Let P = (W, I, R) be a recursive program, let ® be a X}
language, and let W be a 13 language. Let Ag g = (S, So,a) be a Wolper
automaton such that L,(Aew) = ® N W. Then P is correct with respect to
(®, V) iff there exists an ordinal k and a rank predicate p C 2W*5*% sych
that the following holds:

e forallu € I and p € Sy, we have that p(u,p, k) holds, and

o for all u,v € W and p,q € S, if p(u,p,) holds, (u,v) € R, and
(p,u,q) € «, then p(v,q,v) holds for some v < pu.

4 Progress Measures

A progress measure labels each program state with an element in an or-
dered set such that each program transition decreases the rank of the label
[KK91, Kla90, Klagl, Kla92, KS93, Kla94]. Intuitively, the assigned label
measures the progress that a computation makes toward meeting its specifi-
cation. The goal is to show that a progress measure exists for P if and only
if all computations of P satisfy a given specification.

We now show that there is a direct connection between rank predicates
and progress measures. Let P = (W, I, R) be a recursive program and let
Agp v = (5,50, a, F) be a Biichi automaton for the intersection of fairness
and incorrectness.

Consider now the set Z,, = W x 29%% for an ordinal x. Let A, B C S x &,
and let u,v € W. Then z = (u, A) and y = (v, B) are in Z,. We say that x
succeeds y, denoted z >y, if the following holds:

e if (p,) € A and (p,u,q) € a, then (¢,v) € B, for some v <,

o if (p,n) € A, (p,u,q) € o, and p € F, then (q,v) € B, for some v < p.
4

Chicago Journal of Theoretical Computer Science 1996-1

Vardi Rank Predicates vs. Progress Measures §5

We say that x is grounded if for all p € Sy we have that (p, k) € A.
A progress measure of P with respect to Ag w is a mapping : W — Z,,
for some ordinal x such that:

e (B(u) = (u, A) for some A C S X k&,
o if (u,v) € R then f(u) > ((v), and
e if uw € I then f(u) is grounded.

Theorem 4.1 Let P = (W,I,R) be a recursive program, let ® be a X}
language, and let U be a 11} language. Let Agw = (S, Sy, o, F) be a Biichi
automaton such that L,(Agy) = ®NW. Then P is correct with respect to
(®, V) iff it has a progress measure with respect to Ag .

Proof of Theorem 4.1

If: Let 8:W — Z, be a progress measure of P with respect to Ag ¢ for
some ordinal k. Define a rank predicate p C 2W*5** as follows: p(u,p, 1)
holds iff 5(u) = (u, A) and (p, u) € A. It is easy to verify that p satisfies the
conditions of Theorem 3.1; it follows that P is correct with respect to (®,).

Only if: Let p C 2"*5%% be the rank predicate given by Theorem 3.1.
Consider now the function 3: W — Z, defined by

B(u) = (u,{ (p,) | p(u, p, p) holds })

It is easy to see that [is a progress measure of P with respect to Ag v.

5 Discussion

The above results show that progress measures can be derived in a direct
manner from rank predicates and vice versa. Thus, their existence is guar-
anteed for programs that are correct with respect to X1 fairness conditions
and IT7 correctness conditions. As is shown in [Arn83, Kla90], the analog of
Theorem 2.1 holds also in a topological (rather than a recursion-theoretical)

5

Chicago Journal of Theoretical Computer Science 1996-1

Vardi Rank Predicates vs. Progress Measures (Ref)

setting? (i.e., a language is analytic iff it can be defined by means of a Wolper
automaton and iff it can be defined by means of a Biichi automaton), which
means that Theorem 3.1 and Corollary 3.2 can also be stated in a topological
setting. Thus, these results are broad enough to cover many cases of inter-
est, and in particular they cover the Rabin fairness conditions of [KK91], the
safety correctness conditions of [KS93], and the strong fairness conditions of
[K1a92].

Consequently, the goal of research in this area should not be merely to
prove the existence of progress measures, but rather to prove the existence of
progress measures with some desirable properties. It is the intended appli-
cation of progress measures—concurrent-program verification—that should
determine what properties ought to be desired. Indeed, while Theorem 4.1
just proves the existence of progress measures, the progress measures defined
by Klarlund possess specific, interesting properties that are spelled out in
the various papers [KK91, Kla90, Kla91, Kla92, KS93, Kla94].

Acknowledgement of support: Work done at the IBM Almaden
Research Center.

References

[Arn83] A. Arnold. Toplogical characterizations of infinite behaviours
of transition systems. In Proceedings of the 10th International
Colloquium on Automata, Languages and Programming, vol-
ume 154 of Lecture Notes in Computer Science, pages 28-38,
Barcelona, 1983. Springer-Verlag.

[GFMdRS85] O. Grumberg, N. Francez, J. A. Makowsky, and W. P.
de Roever. A proof rule for fair termination of guarded com-
mands. Information and Control, 66:83-102, 1985.

[KK91] N. Klarlund and D. Kozen. Rabin measures and their applica-
tions to fairness and automata theory. In Proceedings of the 6th
IEEE Symposium on Logic in Computer Science, pages 256—
265, Amsterdam, The Netherlands, 1991.

2One can define a topology on w* by taking the basic neighborhoods to be the balls
Ball(j1,...,jk) ={vew |v({)=j; for 0<i<k}for k>0andj,...,j €w, yielding
the Baire space [Mos80].

6

Chicago Journal of Theoretical Computer Science 1996-1

Vardi

[K1a90]

[Kla91]

[K1a92]

[K1a94]

[KS93]

[LPS81]

[Mos80]

[Rog67]

[Var87]

Rank Predicates vs. Progress Measures (Ref)

N. Klarlund. Progress Measures and Finite Arguments for In-
finite Computations. PhD thesis, Cornell University, August
1990. Technical Report TR-1153.

N. Klarlund. Liminf progress measures. In S. Brookes, M. Main,
A. A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings
of the Tth International Conference on Mathematical Founda-
tions of Programming Semantics, volume 598 of Lecture Notes
in Computer Science, pages 477-491. Springer-Verlag, 1991.

N. Klarlund. Progress measures and stack assertions for fair
termination. In Proceedings of the 11th ACM Symposium on
Principles of Distributed Computing, pages 229-240, Vancouver,
Canada, 1992.

N. Klarlund. The limit view of infinite computations. In Pro-
ceedings of the 5th International Conference on Concurrency
Theory (CONCUR °94), volume 836 of Lecture Notes in Com-

puter Science, pages 351-368. Springer-Verlag, 1994.

N. Klarlund and F. B. Schneider. Proving nondeterministically
specified safety properties using progress measures. Information
and Computation, 107:151-170, 1993.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and
fairness: the ethics of concurrent termination. In Proceedings
of the 8th International Colloquium on Automata, Language,
and Programming, volume 115 of Lecture Notes in Computer
Science, pages 264277, Acre, Israel, 1981. Springer-Verlag.

Y. N. Moschovakis. Descriptive Set Theory. North Holland,
1980.

H. Rogers. Theory of Recursive Functions and Effective Com-
putability. McGraw Hill, New York, 1967.

M. Y. Vardi. Verification of concurrent programs: the
automata-theoretic framework. In Proceedings of the 2nd IEEE
Symposium on Logic in Computer Science, pages 167-176,
Ithaca, NY, 1987. Preliminary version of [Var91].

7

Chicago Journal of Theoretical Computer Science 1996-1

Vardi Rank Predicates vs. Progress Measures (Ref)

[Var89) M. Y. Vardi. Unified verification theory. In B. Banieqgbal,
H. Barringer, and A. Pnueli, editors, Temporal Logic in Specifi-
cation, volume 398 of Lecture Notes in Computer Science, pages
202-212, Altrincham, UK, 1989. Springer-Verlag. Proceedings
of 1987 workshop.

[Var91] M. Y. Vardi. Verification of concurrent programs—the
automata-theoretic framework. Annals of Pure and Applied
Logic, 51:79-98, 1991. Extended version of [Var87].

8

Chicago Journal of Theoretical Computer Science 1996-1

