Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1996, Article 2
27 March 1996

ISSN 1073-0486. MIT Press Journals, 55 Hayward St., Cambridge, MA
02142 USA; (617)253-2889; journals-orders@mit.edu, journals-info@mit.edu.
Published one article at a time in I¥TEX source form on the Internet. Pag-
ination varies from copy to copy. For more information and other articles
see:

o http://www-mitpress.mit.edu/jrnls-catalog/chicago.html

hitp://www. cs.uchicago.edu/publications/cjtcs/
e gopher.mit.edu

e gopher.cs.uchicago.edu

anonymous ftp at mitpress.mit.edu

anonymous ftp at cs.uchicago.edu

Ogihara Sparse Hard Sets (Info)

The Chicago Journal of Theoretical Computer Science is abstracted or in-
dexed in Research Alert®), SciSearch®), Current Contents®) /Engineering
Computing & Technology, and CompuMath Citation Index®).

(©1996 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics

in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Martin Abadi
Pankaj Agarwal
Eric Allender
Tetsuo Asano
Laszlé Babai
Eric Bach
Stephen Brookes
Jin-Yi Cai
Anne Condon
Cynthia Dwork
David Eppstein
Ronald Fagin
Lance Fortnow
Steven Fortune

Editors:

Greg Frederickson
Andrew Goldberg
Georg Gottlob
Vassos Hadzilacos
Juris Hartmanis
Maurice Herlihy
Stephen Homer
Neil Immerman
TParis Kanellakis
Howard Karloff
Philip Klein
Phokion Kolaitis
Stephen Mahaney
Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

Chicago Journal of Theoretical Computer Science

]

John Mitchell
Ketan Mulmuley
Gil Neiger
David Peleg
Andrew Pitts
James Royer
Alan Selman
Nir Shavit
Eva Tardos
Sam Toueg
Moshe Vardi
Jennifer Welch
Pierre Wolper

1996-2

Abstract-1

Sparse Hard Sets for P Yield Space-Efficient
Algorithms

Mitsunori Ogihara
27 March, 1996

Abstract

In 1978, Hartmanis conjectured that there exist no sparse com-
plete sets for P under logspace many-one reductions. In this paper, in
support of the conjecture, it is shown that if P has sparse hard sets
under logspace many-one reductions, then P C DSPACE[log? n].

1 Introduction

In 1978, Hartmanis [Har78] conjectured that no P-complete sets under
logspace many-one reductions can be polynomially sparse; i.e., for any set
A € P to which every set in P is logspace many-one reducible, the function
that maps n to the number of elements in A of length up to n is not bounded
by a polynomial in n. The conjecture is interesting and fascinating. If the
conjecture is true, then L # P, because L = P implies that every nonempty
finite set is P-complete. So, since it is widely assumed that L is different from
P, one might believe the validity of the conjecture. Such reasoning may well
be fallacious: proving this conjecture is at least as hard as proving L # P,
and therefore, it may well be the case that even though L # P, P has poly-
nomially sparse complete sets. In order to support the conjecture, one would
perhaps need to show a result in the other direction; that is, if the conjecture
does not hold, then some “implausible” event occurs. Such an implausible
event would be the collapse of P to a (presumably) much smaller class. As
sets in P already have time-efficient recognition algorithms, this should mean
that P has space-efficient algorithms, e.g., P is included in DSPACE[log" n]
for some k.

1

Chicago Journal of Theoretical Computer Science 1996-2

1-2

1-8

1-4

1-5

1-6

Ogihara Sparse Hard Sets §2

The conjecture is reminiscent of the celebrated Berman-Hartmanis con-
jecture [BH77| that all NP-complete sets under polynomial-time many-one
reduction are polynomially isomorphic. If the Berman-Hartmanis conjecture
is true, then P # NP and polynomially sparse sets cannot be NP-complete.
A result to support this conjecture was obtained by Mahaney [Mah82]. He
showed that if there is a polynomially sparse hard set for NP, then P = NP;
that is, unless NP collapses to the seemingly small class P, NP cannot have
sparse complete sets.

In contrast with the sparse hard set problem for NP, not much work has
been done on the Hartmanis conjecture for P—we could call it “the sparse
hard set problem for P.” The only paper I am aware of is by Hemaspaandra,
Ogihara, and Toda [HOT94|, who prove that P cannot have poly-logarithmic
sparse hard sets unless P is included in SC, the class of sets recognized
simultaneously in polynomial-time and in poly-logarithmic space. As one can
easily see, the result is still too weak because the poly-logarithmic sparsity
is a much more stringent condition than polynomial sparsity.

In this paper, I give the first solution to the sparse hard set problem for
P by showing that unless P C DSPACE[log® n], the Hartmanis conjecture
holds for P.

Theorem 1 There exist no sparse P-hard sets under logspace many-one
reductions unless P C DSPACE[log? n).

Let us say a few words about the proof. Assuming the existence of a sparse
P-hard set, we are able to reduce, in a space-efficient manner, any instance
of the circuit value problem to Parity-CVP, the circuit value problem of a
circuit consisting exclusively of parity gates. However, this restricted circuit
value problem is known to be in DSPACE[log® n].

Readers familiar with the class &L [BDHM92], a logarithmic space-bounded
version of &P [PZ83, GP86|, will recognize our reduction to map an in-
stance of the circuit value problem to a problem in @L, and recall that
@L C DSPACE[log? n] (see [BDHMY92] and [AJ93)).

The paper is organized as follows. In Section 2, I define the basic notation
and the circuit value problems. In Section 3, I prove the main theorem.

2

Chicago Journal of Theoretical Computer Science 1996-2

2-1

2-2

2-4

Ogihara Sparse Hard Sets §2

2 Circuit Value Problems

A Boolean circuit is a directed acyclic graph C' with labeled nodes. Nodes
in C with indegree 0 are called input gates, while the other gates are called
interior gates. Input gates in C' have distinct labels from {1,...,n}, where
n is the number of input gates in C'. There is one designated node in C' with
outdegree 0, which is called the output gate. Each interior gate is labeled by
a Boolean function chosen from {—,A,V}. A gate labeled by — is called a
NOT gate and has indegree 1. A gate labeled by A (or V) is called an AND
gate (an OR gate, respectively) and has indegree > 2. A gate g is said to be
a direct input to a gate ¢’ if there is an arc from ¢ to ¢’ in C.

A Boolean circuit is said to be of bounded fan-in if every gate has indegree
< 2. It is said to be of unbounded fan-in if some gate may have indegree
> 2. A Boolean circuit is encoded by its adjacency matrix and the labels of
the gates, where I always assume that the output gate is the last node and
for every i, the i-th input gate is the ¢-th node.

Let C be a Boolean circuit of m gates and n inputs and let x = 21 -- -z, €
{0,1}". For each i, 1 < i < m, let g; denote the i-th gate in C. For i,
1 <i < m, the output of g; in C' on input z, denoted by C|[z, i|, is determined
inductively as follows:

e If g; is an input gate labeled by j, then C[z,i] = ;.

o If g; is a NOT gate whose unique direct input is g;, then Clz,i] =
~(Clz, j]).

e If g; is an AND gate and its direct inputs are g;,, ..., gj,, then Clz,i] =

o If g; is an OR gate and its direct inputs are g;,,...,gj., then Clz,i] =
Clz, j1] V-V Clz, j].

The output of C' on input z, denoted by C(x), is C[x, m].

The circuit value problem (CVP) is the problem of deciding whether a
bounded fan-in Boolean circuit C' outputs 1 on input z. Ladner [Lad75]
showed that CVP is complete for P under logspace many-one reductions. A
circuit C' is topologically sorted if for every 1, j, if g; is a direct input gate
of g;, then ¢« < j. One can easily observe that the construction by Ladner
can be used to show that the topologically sorted version of the problem,
TSCVP, is complete under logspace many-one reductions. I will identify

3

Chicago Journal of Theoretical Computer Science 1996-2

2-6

Proof of Prop 2-1

Proof of Prop 2-2

Proof of Prop 2-3

Proof of Prop 2-4

Proof of Prop 2-5

Ogihara Sparse Hard Sets §2

TSCVP with the set of all strings C'#x such that C' is a topologically sorted
Boolean circuit of n inputs, |z| = n, and C(z) = 1.

The parity function, denoted by @, maps a binary string to the parity
of the number of 1s in it. I also view @ as the function that maps a nat-
ural number n to (n modulo 2). A parity (or, exclusive-or) gate is a gate
of unbounded fan-in that, given binary bits aq,...,a, as inputs, computes
®(ay - - ap). By convention, I will use both &(ay,---,a,) and a3 & --- B a,
to denote @®(ay---a,). A parity circuit is an unbounded fan-in circuit in
which all the gates compute @&. The parity circuit problem is defined as a
variation of the circuit value problem, in which it is asked whether a parity
circuit outputs 1 on a specified input. I define Parity-CVP to be the set
corresponding to the problem: The set of all C#x such that C' is a parity
circuit and, on input z, outputs 1.

A set L is in @L [BDHM92] if there exists a logarithmic space-bounded
nondeterministic Turing machine N such that for every z, x € L if and only
if the number of accepting computation paths of N on x is odd.

Proposition 2 Parity-CVP is in GL.

Proof of Proposition 2 Let C' be a parity circuit of m gates ¢1,...,9m
and n input gates, and let © = x1---x,. Note for any a,b,c € {0,1}, that
@(a’a b, C) = EB(@(CL, b)? C) = EB(CL, @(67 C))

For each i, 1 < i < m, let u(i) denote the number of paths in C' on x from
some input gate with value 1 to the gate g;. I claim for any ¢, 1 < i < m,
that C[x,i] = @(u(i)). This is proven by induction.

For the base case, let g; be an input gate. Then C[z,i] = 1 if and only
if x; = 1. Trivially, there is exactly one path from the gate to itself. So, the
claim holds.

For the induction step, let g; be an interior gate and let gy, , ..., gn, be an
enumeration of all direct inputs to g;. Clearly, pu(i) = 35—, u(hy). Suppose
that the claim holds for hq, ..., hy, ie., Clz, h;| = &(p(h;)) forall j,1 < 5 <L
By definition, C[z,i] = &(C[z, h] + - - - + Clx, hy]). So,

l

Clz,i] = P(@(n(hy) = Du(h;)) = ©(u())

J=1 J=1

Thus, the claim holds for g;. Hence the claim holds for every gate.
Now, noting that Boolean circuits are acyclic, it is easy to construct a
nondeterministic machine witnessing Parity-CVP € @&L. Our machine, on

4

Chicago Journal of Theoretical Computer Science 1996-2

Ogihara Sparse Hard Sets §2

input C'#x, guesses a sequence g;,, ..., ¢;, of at most m gates, and accepts
if and only if the sequence is a path from an input gate outputting 1 to
the output gate. The verification can be done sequentially, so the machine
has only to store two consecutive elements in the sequence. So, it can be
logarithmic space-bounded. Clearly, the number of accepting computation
paths of the machine on C'#x is equal to the number of paths in C' on = from
some input gate with value 1 to the output gate. So, the machine witnesses
that Parity-CVP € @L. This proves the proposition.

Proof of Proposition 2 O
Proposition 3 ((BDHM92, AJ93]) ®L C DSPACE[log’n].

Here I provide a sketch of the proof, which is reminiscent of Savitch’s
theorem [Sav70].

Proof of Proposition 3 Let N be a logarithmic space-bounded nondeter-
ministic machine N witnessing that L € &L, and let z be an input to N.
For two IDs I and J of N on z and a natural number ¢, define Q(I, J,t) to
be the parity of the number of computation paths of N on x from I to J of
length at most 2'. Define Q(I,1,t) =1 for every I and t. Let m = O(log|z|)
be a natural number such that N on x runs for at most 2™ steps, and let I;,;
be the unique start ID of N on x. We may assume that there is a unique
accepting ID of N on z. Let I, denote this ID. Clearly, x € L if and only
if Q(Lini, Lace, m) = 1. Note for every I, J, and ¢t > 0, that

QU,J.t)=EPQU,K,t —1)Q(K, J,t — 1))

K

where K ranges over all IDs of N on x. This suggests the following recursive
procedure to evaluate Q(I, J, t):

o If [= J, then return 1.

e If [# J and t = 0, then compute and return Q(/,J,0) by simulating
one move of N on z at ID I.

e If I # J and t > 0, then set ¢ to 0 and for each K, set c¢ to
(c+Q(I,K,t —1)Q(K, J,t — 1)) modulo 2.

bt

Chicago Journal of Theoretical Computer Science 1996-2

Proof of Theorem 1-1

Proof of Theorem 1-2

Proof of Theorem 1-3

Ogihara Sparse Hard Sets §3

If we run this procedure to evaluate Q(l;, Loec, m), then the recursion depth
is m = O(log|z|). Since each ID is encoded as a string of length O(log|z|),
the evaluation requires O(log?|z|) space, and thus, L € DSPACE[log?n].

Proof of Proposition 3 O

From the above two propositions, I immediately obtain the following:

Proposition 4 Parity-CVP € DSPACE[log® n).

3 Proof of Theorem 1

I repeat the statement of the theorem.

Theorem 1 There exist no sparse P-hard sets under logspace many-one
reductions unless P C DSPACE[log® n].

Proof of Theorem 1 Suppose that there exists a sparse P-hard set under
logspace many-one reductions. Then I show that P € DSPACE[log®n], in
particular, TSCVP is in DSPACE[log® n].

I will make use of the following set A: A is the set of all strings of the
form C#x#I14#b such that:

e ('#x is an instance of TSCVP, i.e., C'is a topologically sorted Boolean
circuit with m gates and n inputs and = € {0,1}",

e [is a nonempty subset of {1,...,m} encoded as the enumeration of
its elements in increasing order,

e be{0,1}, and
o Dics C[xvi] =b.

Clearly, A € P. So, by our supposition, A is logspace many-one reducible
to a sparse set S via some function f. Note that for a sufficiently large m
and every legitimate C#x#I#b, it holds that |CH#x#I1#b| < 2|C#=x|. Since
S is sparse, this implies that for every C'#x, the number of y € S such
that y = f(C#a#I#b) for some I and b is bounded by 27°¢I€#2| for some
constant d.

Let C#=x be fixed, whose membership in TSCVP we are testing. Let
g1, - .., 9m be the gates of C', where g1, ..., g, are the input gates and g,, is

6

Chicago Journal of Theoretical Computer Science 1996-2

Proof of Theorem 1-4

Proof of Theorem 1-5

Proof of Theorem 1-6

Proof of Theorem 1-7

Ogihara Sparse Hard Sets §3

the output gate. Let [= |C#x| and e = [dlogl]|. As we have already fixed
C and x, I will simply use I#b to denote C#x#I1#0b by dropping C and x.
By the above observation, the number of y € S such that y = f(I#b) for
some [€ {1,...,m} and b € {0, 1} is less than 2°.

Now I introduce the notion of good gates and bad gates. Let 7 be the set
of all nonempty subsets of {1, ..., m} of size at most e. Leti € {n+1,...,m}.
I say that g; is good if there exist distinct /,JJ € 7 and b,c¢ € {0,1} such
that

fI#b) = f(J#c) and i = max(I A J)

where I A J denotes the symmetric difference of I and J. Otherwise, g; is
called bad. Intuitively, an interior gate g; is good if we can easily find a set
of gates gj, ..., gy such that the parity of the output of these gates is equal
to the output of g;, and thus, the evaluation of g; can be reduced to the
evaluation of g;, ..., gk.

The outline of the main steps of the proof is as follows: (1) show that
there are very few bad gates; (2) construct a parity circuit D whose inputs
are x and the bad gates, and whose interior gates are good gates; (3) show
that for some assignment of values to the bad gates in D, the value of each
gate in D is equal to the value of the corresponding gate in C'; and (4) use
the fact that D can be computed in polylog space.

Claim 1 The number of bad gates is at most e.

Proof of Claim 1 Assume that there are e+1 bad gates and let g, ..., gn,,,
be an enumeration of e + 1 bad gates. Let R be the set of all nonempty sub-
sets of {hy,...,hey1} of size at most e. Note for any I € R, that exactly
one of f(I#0) or f(I#1) is in S, because exactly one of I#0 or I#1 is in
A. So, let b; be the unique b € {0,1} such that f(I#b) € S. Note also,
for any distinct I,J € R, that f(I#b;) # f(J#b;). Otherwise, g, with
k = max(I A J), which is bad by our assumption, is good, a contradiction.
Since there are 2¢t1 — 2 > 2¢ elements in R, we can collect 2¢ elements in S,
which contradicts the assumption that there are less than 2° elements in S
we see as the image of f. This proves the claim.

Proof of Claim 1 O

Now let gp,,...,gn, be the enumeration of all bad gates and let H =
{h1,...,hy}, where ¢ < e. For each good g;, let (1(),b(3), J(4),c(i)) be the
7

Chicago Journal of Theoretical Computer Science 1996-2

Proof of Theorem 1-8

Ogihara Sparse Hard Sets §3

lexicographically minimum (I#b, J#b) witnessing that g; is good. I define a
parity circuit D with m + 1 gates and n 4+ ¢ + 1 input gates as follows:

e The gates of D are those of C plus one new gate gp.

e The input gates of D are gg, the input gates of C', and the bad gates;
that is, they are go,g1,...,9n, 9ns,---» gn,- I will fix the input to go to
1.

e Each interior gate g; in D computes the parity function, whose direct
inputs are given as follows:

— If b(¢) = ¢(i), then all g; with j € (I(7) A J(i)) — {i}.
— If b(7) # (i), then all g; with j € (I(¢) A J(i)) — {i} plus go.

Note that D is topologically sorted since C'is topologically sorted, and if g;
is good then i is the largest in (i) A J(i).

I say that v € {0,1}7 is valid if the value assigned by v to each bad gate
is equal to the value of the bad gate in C'#x; i.e., for all t,1 <t < ¢, the t-th
bit of v is equal to C[z, hy]. It is obvious that there is a unique valid v.

Claim 2 v is valid if and only if for every gate g;,i,1 < i < m, Clz,i] =
Dllzwv,1].

Proof of Claim 2 The implication from right to left is obvious. The other
direction is proven inductively. First, note that C|x,i] = D[lzv, 1] holds for
every bad gate g;. Next, let g; be a good gate and suppose that the claim
holds for every direct input g; of g; in D. Thave f(I(i)#b(i)) = f(J(7)#c(7)).
So,
b(i) = @ Clz,j] if and only if ¢(i) = @ Clz, J]
JEI(E) jeJ (i)

This implies

where ji, ..., ji is an enumeration of all j such that j # i and j € I1(:) A J(3).
By our supposition, for each t, 1 < ¢t < k, D[lzv,j,| = Clz, j;]. Also, by
definition, gy is among the direct inputs of g; if and only if b(i) # c(7), i.e.,
b(i) @ c(i) = 1. Thus, C|x,i] = D[lzv,i]. Hence, the claim holds for g;. This
proves the claim.
Proof of Claim 2 O
8

Chicago Journal of Theoretical Computer Science 1996-2

Proof of Theorem 1-9

Proof of Theorem 1-10

Proof of Claim 4-1

Ogihara Sparse Hard Sets §3

For each v € {0,1}9 and ¢, 1 < t < ¢, I say that v is correct at t if,
depending on the type of g;, in C, the following conditions are satisfied:

o If g5, is a NOT gate in C' with g; as its direct input, then v; is equal
to =(D[lzv, j]).

o If g5, is an AND gate in C with g; and g as its direct inputs, then v,
is equal to D[lzwv, j] A D[1zv, k.

o If g5, is an OR gate in C with g; and g as its direct inputs, then v, is
equal to D[1lzwv, j] V D[1lzwv, k.

Claim 3 v is valid if and only if for all t, 1 <t < q, v is correct at t.

Proof of Claim 3 The implication from left to right is obvious. To prove
the other direction, suppose that v is not valid. Let ¢ be the smallest ¢ such
that the i-th bit of v is not equal to the output of the gate of C' on input
x; i.e., t is the smallest i, 1 < i < ¢, such that v; = D[lzv,j;] # Clx,ji].
Since D is topologically sorted, by an argument similar to that in the proof
of Claim 2, we have D[lzv, k] = C[z, k] for all k < j;. If v is correct at ¢,
then v; is equal to C|x, ji], a contradiction. So, v is not correct at t.

Proof of Claim 3 O

The above claims suggest the following algorithm to reduce C' to D with
the unique valid v.

Step 1: For each interior gate of C, test whether it is good, and construct
H, the set of all bad gates.

Step 2: For each v € {0,1}9, test whether v is valid by testing whether v is
correct at all ¢, and if so, use the valid v to compute D[lzv, m].

Claim 4 The algorithm can be executed in O(log®l) space.

Proof of Claim 4 Let M be a logspace machine that computes f. Note
that I € 7 is encoded as a string of length O(elogm) = O(log®l). Given
I#b and J+#c, test whether f(I#b) = f(J#c) can be done by simulating
M on I#b and M on J#c simultaneously to compare f(I#0b) and f(J#c)
bit by bit. Since M’s output tape is certainly write-only, the comparison
requires storing only the most recent output bit from each. More precisely,

9

Chicago Journal of Theoretical Computer Science 1996-2

Proof of Claim 4-2

Proof of Claim 4-3

Proof of Claim 4-4

Ogihara Sparse Hard Sets §3

M on I#0b and M on J#c are simulated alternatively step by step. If one of
the simulations outputs a new bit of f, then it is suspended until the other
simulation produces a new bit of f or halts without outputting a new bit. If
both produce new bits, then the bits are compared and, if they are different,
it must be the case that the values of f are different. The comparison is
therefore terminated. If only one simulation produces a new bit, then the two
values of f obviously have different lengths, so the values are different and
the comparison is terminated. If both simulations halt without producing
any new bits, then since the bits that have been produced so far are the
same, it must be the case that they have the same value. The amount of
space expended by the simulations is O(log®[), the amount required to store
I#b and J+#c, since M is logarithmic space-bounded.

To test whether an interior gate g; is good, and if so, to compute 1(7), b(7),
J (i), and ¢(7), it suffices to test, by cycling through all possible (I#b, J#c)
in the lexicographic increasing order, whether (I#b, J#c) witnesses that g; is
good. By the previous discussion, the amount of space required is O(log?1).
There are at most e bad gates, so the amount of space required to store H,
the set of all bad gates, is O(elogm) = O(log*1), so, H can be computed in
space O(log?[).

Note that, as we are developing an O(log®n) algorithm, there is not
enough space to store the entire description of D. However, after obtain-
ing H, each bit of the description of D is computable in O(log?l) space as
follows: In order to determine the direct inputs to g;, if either i < n or
1 € H, then g; is an input gate of D, and so, has no direct inputs; otherwise,
1(1),b(1), J(4), c(i), which are computable in O(log®[) space, provide the list
of direct inputs.

To test whether v is correct at t, since h; is the t-th element in H and the
type of g, in C' and its direct input(s) are determined from C#uzx, it suffices
to compute D[lzw, j] for j such that g, is a direct input to gy, in C'. Since D is
a parity circuit, the computation problem is solvable by Parity-CVP. Recall
that I demand that the last gate of a circuit be the output. So, let D; be the
circuit constructed from D by making the connection of g, identical to that
of g;. Then D;(lzxv) = D;[lzv,m| = D[lzv,j|. Let N be a deterministic
Turing machine that decides Parity-CVP in O(log® n) space. Since each bit of
the description of D is computable in O(log®) space, given j, each bit of the
description of D; is computable in the same amount of space. Thus, one can
simulate N on D;#lxzv by keeping track of the position of N’s input head.
When N needs to read the k-th bit of its input, one has only to activate the

10

Chicago Journal of Theoretical Computer Science 1996-2

Proof of Claim 4-5

Ogihara Sparse Hard Sets (Ref)

algorithm to produce D to compute the k-th bit (by recording the number
of bits produced so far and the current bit), where the bits for the m-th gate
are computed from those for the j-th gate. Thus, D[lxv, j| is computable in
O(log®l) space, and therefore, whether v is valid can be tested in the same
amount of space.

Once the valid v is discovered, since it is of length at most e, there is
enough space to record it. Now we have only to compute C[z, m] as D[1lzv, m|
with the valid v. Again, we have only to simulate N while computing the bits
of D on demand, which requires O(log2 l) space. Hence, the whole process
can be done in O(log®[) space. This proves the claim.

Proof of Claim 4 O

This completes the proof of the theorem.

Proof of Theorem 1 O

By a straightforward generalization of the proof, I obtain the following
theorem.

Theorem 2 Letd,e > 1 and let S be a set whose density function is bounded
by 90(og"n) Suppose every set in P is many-one reducible to S via a function
f computable in O(log®n) space. Then P C DSPACE[log™ ™ n.

4 Conclusion

I have given a solution to the Hartmanis conjecture on sparse complete sets
for P by showing that P cannot have many-one-hard sets of low density via
space-efficient reductions unless P € DSPACE[log® n]. I note here that, by
extending the technique in this paper, Cai and Sivakumar have recently re-
solved the conjecture by showing that sparse P-hard sets exist under logspace
many-one reductions if and only if P = L [CS95]. The technique has been
further extended to study the sparse P-hard set problem for more flexible
reducibilities [CNS95, vM95]. A very interesting open question in this re-
gard is whether P having sparse hard sets under logspace Turing reductions
collapses P.

11

Chicago Journal of Theoretical Computer Science 1996-2

Ogihara Sparse Hard Sets (Ref)

5 Acknowledgment

The author would like to thank Eric Allender, Jin-yi Cai, Lane Hemaspaan-
dra, Ioan Macarie, D. Sivakumar, and Marius Zimand for enjoyable discus-
sions, and anonymous referees for many invaluable comments.

References

[AJ 93] C. Alvarez and B. Jenner. A very hard log-space counting class.
Theoretical Computer Science, 107:3-30, 1993.

[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure
and importance of Logspace-MOD class. Mathematical Systems
Theory, 25:223-237, 1992.

[BH77] L. Berman and J. Hartmanis. On isomorphisms and density
of NP and other complete sets. SIAM Journal on Computing,
6(2):305-322, 1977.

[CNS95] J. Cai, A. Naik, and D. Sivakumar. On the existence of hard
sparse sets under weak reductions. Technical Report 95-31, De-
partment of Computer Science, State University of New York at
Buffalo, Buffalo, NY, July 1995.

[CS95] J. Cai and D. Sivakumar. The resolution of a Hartmanis con-
jecture. In Proceedings of the 36th Conference on Foundations
of Computer Science, pages 362-371, Los Alamitos, CA, 1995.
IEEE Computer Society Press.

[GP86] L. Goldschlager and I. Parberry. On the construction of parallel
computers from various bases of Boolean functions. Theoretical
Computer Science, 43:43-58, 1986.

[Har78| J. Hartmanis. On log-tape isomorphisms of complete sets. The-
oretical Computer Science, 7(3):273-286, 1978.

[HOT94] L. Hemaspaandra, M. Ogihara, and S. Toda. Space-efficient
recognition of sparse self-reducible languages. Computational
Complezity, 4:262—296, 1994.

12

Chicago Journal of Theoretical Computer Science 1996-2

Ogihara Sparse Hard Sets (Ref)

[Lad75] R. Ladner. The circuit value problem is log space complete for
P. SIGACT News, 7(1):18-20, 1975.

[Mah82] S. Mahaney. Sparse complete sets for NP: solution of a conjecture
of Berman and Hartmanis. Journal of Computer and System
Sciences, 25(2):130-143, 1982.

[PZ83] C. Papadimitriou and S. Zachos. Two remarks on the power of
counting. In Proceedings of the 6th GI Conference on Theoretical
Computer Science, volume 145 of Lecture Notes in Computer
Science, pages 269-276, Berlin, 1983. Springer-Verlag.

[Sav70] W. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System
Sciences, 4:177-192, 1970.

[vMO5] D. van Melkebeek. On reductions of P sets to sparse sets. Tech-
nical Report TR95-06, Department of Computer Science, Uni-
versity of Chicago, Chicago, IL, August 1995.

13

Chicago Journal of Theoretical Computer Science 1996-2

