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This article is included in the Special Issue on Self-Stabilization, edited by
Shlomi Dolev and Jennifer Welch. The article presents a technique for prov-
ing stabilization of algorithms for systems with a rooted tree communication
graph. Proving correctness of a distributed algorithm is sometimes a subtle
task. Proving correctness of self-stabilizing distributed algorithms is even a
more subtle task, since self-stabilizing algorithms can be started in any pos-
sible state. Therefore, techniques like the one presented in this article may
serve the algorithm designer in proving the stabilization property.
The editor for this article is Shlomi Dolev.
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Self-Stabilization by Tree Correction*

George Varghese Anish Arora Mohamed Gouda
4 November, 1997

Abstract

We describe a simple tree-correction theorem that states that any
locally checkable protocol that works on a tree can be efficiently sta-
bilized in time proportional to the height of the tree. We show how
new protocols can be designed, and how existing work can be easily
understood using this theorem.

1 Introduction

A protocol is self-stabilizing if, when started from an arbitrary global state, it
begins to execute “correctly” after finite time. Typical protocols are designed
to cope with a specified set of failure modes such as packet loss and link
failures. A self-stabilizing protocol handles a set of failures that subsumes
most previous categories, and is robust against transient errors. Transient
errors include memory corruption, as well as malfunctioning devices that
send out incorrect packets. Transient errors do occur in real networks and
cause systems to fail unpredictably. Thus stabilizing protocols are attractive
because they offer increased robustness as well as potential simplicity. Self-
stabilizing algorithms can be simpler, because they use uniform mechanisms
to deal with many different kinds of failures.

Self-stabilizing protocols were introduced by Dijkstra [Dij74], and have
been studied by various researchers (see [Sch93] for a survey). There have
been few general techniques for self-stabilization. This paper introduces one
such general technique, which we call tree correction. We will show that,

*A preliminary version of this paper appeared in [VAG95].
1
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whenever applicable, tree correction is a simple and effective technique for
stabilization.

1.1  General Techniques for Self-Stabilization

We begin by reviewing two earlier general techniques for self-stabilization
that are most directly relevant to tree correction. Work on general techniques
for self-stabilization began with a seminal paper by Katz and Perry [KP90]
which showed how to compile an arbitrary asynchronous protocol into a
stabilizing equivalent. In Katz and Perry’s method, there is a leader that
periodically checks the network. If the leader discovers that the network is
in an illegal state, the leader corrects the network by resetting it to a good
state. Intuitively, centralized checking and correction is slow, and has high
message complexity. Thus the general transformation is expensive; hence
more efficient (and possibly less general) techniques are worth investigating.

One such direction [APV91, Var93]| is to divide the network into a num-
ber of overlapping link subsystems. A link subsystem consists of a pair of
neighboring nodes and the channels, if any, between them.! The idea is
to replace the global, centralized checking of [KP90] with local, decentralized
checking. The intent, of course, is to allow each link subsystem to be checked
in parallel. This results in faster stabilization.

A network protocol is locally checkable if whenever the protocol is in a
bad state, some link subsystem is also in a bad state. Thus if the protocol
is in a bad state, some link subsystem will be able to detect this fact locally.
Intuitively, a network protocol is locally correctable if the network can be
corrected to a good state by each link subsystem independently correcting
itself to a good state. Clearly, local correction is nontrivial, because link
subsystems overlap at nodes that have more than two neighbors.

Techniques that transform any locally checkable and correctable protocol
into a stabilizing equivalent are given in [APV91, Var93|. The idea is simple:
a leader is elected for each link subsystem. Each leader periodically checks the
invariants of its link subsystem and corrects the subsystem if it finds an error.
Because checking and correction proceed in parallel for each subsystem, this
method yields fast stabilization times for several protocols [APV91, Var93].

While the centralized checking and correction of Katz and Perry [KP90]

'In simple shared-memory models, such as the ones considered in this paper, we con-
sider a link subsystem just to be a pair of neighboring nodes.

2
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can be too slow, the local correctability requirement of [APV91, Var93] can
be too restrictive. There are several protocols (including some described in
this paper) that are not locally correctable using the definitions of [APV91,
Var93]. The tree-correction technique described in this paper provides some
middle ground. We show how to stabilize protocols efficiently that are locally
checkable and work over a tree topology. Thus we have removed the local
correctability requirement, but added a requirement for tree topologies. In
this paper, we make a case for the applicability of tree correction, and show
two examples where it can be used effectively.

It is also important to compare tree correction to other, related work.
However, these comparisons are rather technical. For this reason, we defer
these more technical comparisons to Section 7. The nuances in Section 7 can
be better understood after the tree-correction technique is presented.

1.2  Dijkstra’s Shared-Memory Model

In this paper, we use Dijkstra’s [Dij74] shared-memory model to model net-
work protocols. In this model, a network protocol is modeled using a graph
of finite-state machines. In a single move, a single node is allowed to read
the state of its neighbors, compute, and then possibly change its state. In a
real distributed system, such atomic communication is impossible. Typically
communication has to proceed through channels. Such channels must be
modeled explicitly as state machines that can store messages sent from one
node to another.

While Dijkstra’s model is not very realistic, it captures the essential fea-
tures of network protocols in a simple way. This allows us to state a very
simple version of our main tree-correction theorem. Second, it allows us to
apply our theorem to understand succinctly earlier protocols (e.g., [Dij74],
[AG90]) that were described using Dijkstra’s model. Third, many protocols
that work in Dijkstra’s model have been easily extended to work in message-
passing models.?

In summary, we use Dijkstra’s model because it allows a simple expo-
sition of tree correction; tree correction can be extended to more realistic
message-passing models [Var93| with some additional complexity in the the-
orem statement and proof.

2The first two protocols in [Dij74] are extended to message-passing models in [Var93].

3
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1.3 Paper Organization

The main result of the paper is a theorem (Theorem 1) that states that any
locally checkable protocol on a rooted tree can be efficiently stabilized. In
Section 3 we state Theorem 1, and provide a proof in Section 4. In Section 5,
we show how a reset protocol [AG90] due to Arora and Gouda can also be
simply understood in this framework. In Section 6, we describe how a mutual
exclusion protocol, due to Dijkstra, can also be easily understood using our
theorem. Finally, we compare our work in more detail with related work
on local checking and correction and distributed constraint satisfaction, and
state our conclusions. The appendix contains a formal summary of the timed
[/O automaton model used in this paper.

2  Modeling Shared-Memory Protocols

We will use a version of the timed I/O automaton model [MMT91]. The
appendix contains a formal summary of this model. It is essentially a state-
machine model described using automata. The state transitions of the au-
tomata are called actions. The general model has actions called input and
output actions that allow an automaton to interact with the environment and
to facilitate the composition of automata. We only use the simplest type of
action, called an internal action, which changes the state of the automaton
without any externally visible effects.

When the automaton runs, it produces executions. Each execution is a
sequence of alternating timed states and actions. A timed state is a tuple
consisting of a state and a time value. Timed states allow us to model the
passage of time and state precisely intuitive statements such as “action a
occurs within time ¢ in all executions of the automaton.” The correctness
of an automaton (or more generally, the protocol that is being modeled by
the automaton) is specified by giving a set of “correct executions.” The
automaton is said to be correct if its executions fall within the specified set.
The reader who is unfamiliar with this model is referred to the appendix.

How can we map Dijkstra’s model into this model? Suppose each node
in Dijkstra’s model is a separate automaton. Then in the I/O automaton
model, it is not possible to model the simultaneous reading of the state of
neighboring nodes. Our solution is to dispense with modularity, and model
the entire network as a single automaton. All actions, such as reading the

4
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state of neighbors and computing, are internal actions. The asynchrony in
the system, which Dijkstra modeled using a “demon,” is naturally a part of
the I/O automaton model. Also, we describe the correctness of Dijkstra’s
systems in terms of ezecutions of the automaton.

The major reason for using the timed I1/O automaton model is that it
allows us to give precise definitions of stabilization times. However, in terms
of asynchronous executions, our model behaves exactly like Dijkstra’s model,
and hence our results apply to Dijkstra’s original model. The I/O automaton
model also provides standard notation (e.g., fairness using classes) that we
find helpful.

Thus we model a network as a single automaton in which a node can read
the state of all its neighbors (and write its own state) in a single move using
an internal action. We define this special kind of I/O automaton formally as
follows:

A shared memory network automaton N for graph G = (E,V) is an
automaton in which:

e The state set of A is the cross-product of a set of node states, S,(N),
one for each node u € V. The set of start states of N is the cross-
product of a set of start states, I,(N'), one for each node u € V. For
any state s of A/, we use s|u to denote s projected onto S,. This is also
read as the state of node u in global state s.

e All actions of N are internal actions, and are partitioned into sets,
A, (N), one for each node u € V.

e Suppose (s, 7, §) is a transition of N and 7 belongs to A, (N). Consider
any state s’ of N such that s'|u = s|u and s'|v = s|v for all neighbors v
of u. Then there is some transition (s', 7, §') of N such that §'|v = 5Jv
for u and all u’s neighbors in G.

e Suppose (s,7, §) is a transition of N' and 7 belongs to A,(N). Then
slv = §|v for all nodes v # w.

Informally, the third condition requires that the transitions of a node
u € V only depend on the state of node u and the states of the neighbors of
u in G. The fourth condition requires that the effect of a transition assigned
to node u € V' can only be to change the state of u.

A shared-memory tree automaton is a shared-memory network automaton
where G is a rooted tree. Thus for any node 7 in a tree automaton, we assume

5
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there is a value parent(i) that points to the parent of node 7 in the tree. There
is also a unique root-node r that has parent(r) = nil. For our purposes, it is
convenient to model the parent values as part of the code at each node. More
generally, the parent pointers could be variables that are set by a stabilizing
spanning-tree protocol as shown in [AG90]. We often use the phrase “tree
automaton” to mean a “shared-memory tree automaton,” and the phrase
“network automaton” to mean a “shared-memory network automaton.”

In general, shared-memory automata have start states (see first condition
in definition). However, to model stabilization, we use a special kind of
automaton called an unrestricted automaton. We say that an I/O automaton
A is an unrestricted automaton if all possible states in the state set of A are
also start states of A.

Intuitively, an unrestricted automaton models a system that can start
in an arbitrary state. Thus to show stabilization results, we will show that
the executions of some unrestricted automaton A will eventually begin to
“look like” the executions of some other correct automaton B (B need not
be unrestricted).

3 Tree Correction for Shared-Memory
Systems

We start with some definitions. A closed predicate of an automaton A is a
predicate L such that for any transition (s, ,3) of A, if s € L, then 5 € L.

A link subsystem of a tree automaton is an ordered pair (u,v), such that u
and v are neighbors in the tree. To distinguish states of the entire automaton
from the states of its subsystems, we sometimes use the word global state to
denote a state of the entire automaton. For any global state s of a network
automaton, we define (s|u, s|v) to be the state of the (u,v) link subsystem.
Thus the state of the (v, u) link subsystem in global state s is (s|v, s|u).

A local predicate L, , of a tree automaton is a subset of the states of a
(u,v) link subsystem. A link predicate set L for a tree automaton is a set
that contains exactly one local predicate L,, , for every link subsystem in the
tree, and which satisfies the following conditions:

e Symmetry: For each pair of neighbors w and v, if (a,b) € L,,, then
(b,a) € Ly, (i-e., while a link predicate set has two link predicates for

6
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each pair of neighbors, these two predicates are identical except for the
order in which the states are written down).

e Nontriviality: For all link subsystems (u, v) in the tree, there is at least
one global state s such that (s|u, s|v) € Ly,,.

e Closed Intersection: Define the intersection predicate
L' ={s: (s|u,s|v) € L, for all link subsystems (u,v) in the tree }
Then L' is a closed predicate.

These are not very restrictive conditions. One can always rewrite any
link predicate set to satisfy symmetry. In the sequel, we will design an
automaton that will stabilize to states satisfying the intersection predicate.
Thus if the two link predicates L, , and L,, were unequal (except for the
order of states), we could always rewrite them both as a new link predicate
that contains the intersection of the states in the two original predicates,
and still have the same result. Next, if some local predicate is the empty set,
then it is impossible to find any global state that satisfies the intersection
predicate L'. Finally, requiring that the intersection predicate be closed is
essential to stabilization; if L’ were not closed, the protocol might stabilize
to some state satisfying L' and then transition to some state that does not
satisfy L’. This would make our definition of stabilization meaningless. Note
that we do not require that each of the local predicates L, , be closed, a
much stronger condition required in [APV91].

A tree automaton is locally checkable for predicate L if there is some link
predicate set £ = {L,,} such that:

L D {s:(s|lu,s|v) € Ly, for all link subsystems (u, v) in the tree }

In other words, the global state of the automaton satisfies L if every link
subsystem (u,v) satisfies L, .

Recall that an execution of an automaton is an alternating sequence of
timed states and actions satisfying the transition rules and timing conditions
specified by the automaton definition. Refer to the appendix for a formal
definition. Since we use timed states in this definition, we can talk about
some state s starting at time ¢ after the time of the first state in the execution.
With this machinery, we are ready to define stabilization.

7
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We say that automaton A stabilizes to the executions of automaton B in
time t if for every execution a of A there is some suffix of execution «, whose
first state starts no less than ¢ time units after the first state of «, that is an
execution of B. Intuitively, this says that after time ¢, every execution of A
begins to “look like” an execution of B.

Recall the definition of an unrestricted automaton as an automaton whose
set of start states is identical to its set of states (i.e., any state can be a
start state). We also use A|L to denote the automaton that is identical to
automaton A except that the start states of A|L are the states in set L. For
any rooted tree T, we let height(T) denote the maximum length of a path
between the root and a leaf in 7. We can now state a simple theorem.

Theorem 1 (Tree-Correction in Shared-Memory Systems) Consider
any tree automaton T for tree T that is locally checkable for predicate L.
Then there exists an unrestricted tree automaton T+ for T such that T+
stabilizes to the executions of T|L in time proportional to height(T).

Thus after a time proportional to the height of the tree, any execution of
the new automaton 7+ will “look like” an execution of 7 that starts with a
state in which L holds.

4  Proof of Tree-Correction Theorem

We start by giving an overview of the proof. We then show how to construct
automatically the stabilizing automaton 7+ from the original automaton 7,
and show that 7 satisfies the requirements of the theorem.

4.1 Proof Overview

The essence of the construction is to augment the original automaton with
periodic correction actions that are added to the action set of each node other
than the root. The correction action is simple: node u reads the state s|v
of its parent and checks whether (s|u, s|v) € L, (i.e., u checks whether the
link subsystem state satisfies the link predicate for link (u,v)).

Let us informally say that (u,v) is in a bad state in global state s if
(s|u, s|v) & Ly,. Let us informally call a global state s a bad state if some
link (u,v) is in a bad state. In other words, a good state is a state that

8
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satisfies the intersection predicate
L' ={s:(s|u,s|v) € Ly, for all link subsystems (u,v) in the tree }

The goal of the correction actions is to move toward a good global state from
a bad global state by correcting links that are in bad states.

However, to make this work, we need to ensure two conditions. First,
we need to ensure that a node can always find some local state to correct
itself into after reading its parent’s state. Second, we need to ensure that
once a link (u,v) gets into a good state and all links “above” the link in the
tree are also in good states, then (u,v) remains in a good state. If these
two conditions are met, we can argue that links directly connected to the
root will eventually get into good states and stay that way. Once this is
true, we can argue that links connected to nodes that are distance 1 from
the root eventually get into good states and stay that way. We can apply
this argument inductively to argue that links connected to nodes that are
distance ¢ from the root eventually get into good states and stay that way.

As a result, the automaton will eventually get into a good global state
regardless of what state it starts in, and hence it is a stabilizing automaton.
Notice that in the formal description, a “good” state is a state satisfying L’
(and not L). But since L' is a subset of L, this is sufficient for our purposes.?

It only remains to satisfy the two conditions alluded to earlier. The first
condition may not be satisfiable if the state set of a node contains states that
never occur in L. For example, consider the two-node system (u,v) where
L,, = {(1,1)} and the state set of node v = {1,3}. If node v is in state 3
and node v is the parent of u, then node u cannot find any state compatible
with L, , to which it can correct itself.

The solution to this problem is to banish useless states (that never occur
in L') from the state set of each node in the augmented automaton. Thus in
the example above, we redefine the state set of v to be v = {1}, ruling out the
“useless” state 3. We call this step normalization. Notice that normalization
is not a way of adding start states to our new automaton (the theorem
requires the constructed automaton to allow all possible states to be start
states!), but a way of refining the state space of the new automaton.*

3In practice, this is a spurious generality, because we might as well have defined our
goal state L to be equal to L', since that is all the theorem guarantees.

4The reader should convince himself or herself that state-space refinement cannot be
used to trivialize stabilization problems. Consider doing token passing between two dis-

9
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The second condition we need to ensure is that once a link (u,v) gets
into a good state and all links “above” the link in the tree are also in good
states, then (u,v) remains in a good state. We solve this by adding extra
guards to the normal (i.e., other than correction) actions at each node u of
the automaton such that these actions are not taken unless all links adjacent
to node u are in good states. We can then prove that any normal action
taken under these circumstances at node u cannot affect the “goodness” of
the states of links adjacent to wu.

Intuitively, this is because we can always construct a good global state
s € L' in which u has the same local view. If the normal action violates
the “goodness” of any link adjacent to node u, then it will do so for some
valid transition from global state s as well, because of the locality properties
of the automaton. But this contradicts the assumption that L’ is a closed
predicate. The formal proof below (see Lemma 2 and Lemma 4) follows this
intuition.

4.2 Main Construction

We now show how to construct the stabilizing automaton 7 from 7. As-
sume that 7 is locally checkable for predicate L using link predicate set
L ={L,,}. Recall that we defined the intersection predicate (i.e., the set of
global states that satisfy all local predicates). Thus we defined

L' ={s:(s|u,s|v) € Ly, for all link subsystems (u,v) in the tree }

Clearly, L O L'. Also because of the nontriviality of the link predicate set,
L’ is not the empty set. To construct 7 from 7, we do the following:

e First normalize all node states in 7. Intuitively, we remove all states
in the state set of a node u that are not part of a global state that
satisfies L'. Thus S, (71) = {sju: s € L' }. The state set of 7T is just
the cross-product of the normalized state sets of all nodes. This rules

tributed processes. Even after state-space refinement, each process must have at least one
flag to indicate when it has the token. The two flags result in four possible global states,
of which two are “good states” and two (i.e., two tokens or no token) are “bad” states.
On the other hand, if the two processes were on a single computer, state-space refinement
could trivially solve the stabilization problem by using a single two-valued turn variable!
The bottom line is that state-space refinement is often useful, but does not by itself solve
stabilization problems for distributed protocols.

10
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out useless node states that never occur in global states that satisfy all
local predicates.

e Retain all the actions of 7, but add an extra precondition (i.e., an extra
guard) to each action a, € A, of 7 as shown in Figure 1. This extra
guard ensures that a normal action of 7 is not taken at node u unless
all links adjacent to u are in “good states.” All actions of 7 remain
in the same classes in 7. (Recall that in the timed I/O automaton
model, timing guarantees for internal actions are expressed by grouping
these actions into classes. Fach class ¢ has an associated time bound
t.; if some action in class c¢ is enabled for ¢, time, then some action in
class ¢ must occur in ¢, time.)

e Add an extra correction action, CORRECT,, for every node u in the
tree that is not the root. CORRECT, is also described in Figure 1.
This extra action “corrects” the link between node u and its parent if
this link is not in a “good” state. Each CORRECT, action is put in a
separate class with upper bound equal to t,04¢; trhode i just a parameter
that expresses an upper bound on the time for any node to perform a
correction action.

4.3 Proof of Validity of Construction

We outline a proof of the theorem by a series of lemmas. The first thing
a reader needs to be convinced of is that the construction in Figure 1 is
realizable. The careful reader will notice that we made two assumptions.
First, in the CORRECT, action, we assumed that for any link subsystem
(u,v) of TT and any state b of node v there is some a such that (a,b) € Ly,.
Second, we assumed that when a modified action a, is taken at node u, the
resulting state of node u has not been removed as part of the normalization
step.

We will begin with a lemma showing that the first assumption is a safe
one. Later, we show that the second assumption is also safe.

Lemma 1 For any link subsystem (u,v) of T+ and for any state b of node
v there is some a such that (a,b) € Ly,,.

11
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The state of 77 is identical to 7 except that the state set of each node is normalized
to{slu:selL}.

MODIFIED_ACTION @y, a,, € A, (* modification of action a,, in 7 %)

Preconditions: Exactly as in a,, except for the additional condition:
for all neighbors v of u: (s|u, s|v) € Ly,

Effects: Exactly as in a,
CORRECT,, (* extra correction action for all nodes except the root )

Preconditions: (parent(u) = v) and ((s|u, s|v) & Ly)

Effects:
Let a be any state in S, (7 ") such that (a, s|v) € Ly,
Change the state of node u to a

Each CORRECT,, action is in a separate class with upper bound t,,,4e.

Figure 1: Augmenting 7 to create 7 *

Proof of Lemma 1 We know that for any state b of v there is some state
s € L' such that sjv = b. This follows because all node states have been
normalized and because L' is not empty. Then we choose a = s|u.

Proof of Lemma 1l O

The next lemma shows a local extensibility property. It says that if any
node u and its neighbors have node states such that the links between u and
its neighbors are in good states, then this set of node states can be extended
to form a good global state.

Lemma 2 Consider a node v and some global state s of T* such that for
all neighbors v of u, (s|u, s|v) € Ly,. Then there is some global state s' € L'
such that §'|u = s|lu and §'|v = s|v for all neighbors v of .

Proof of Lemma 2 We create a global state s’ by assigning node states to
each node in the tree such that for every link subsystem (u,v), the state of
the subsystem is in L, ,. Start by assigning node state s|u to u and s|v to
all neighbors v of u. At every stage of the iteration, we label a node x that

12
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has not been assigned a state and is a neighbor of a node y that has been
assigned a state. But, by Lemma 1, we can do this such that the state of the
subsystem containing x and y is in L, ,. Eventually we label all nodes in the
tree and the resulting global state is in L’. Once again, this is because for
every link subsystem (u,v), the state of the (u,v) subsystem is in L,,,,.

Proof of Lemma 2 O

The labeling procedure used in the lemma depends crucially on the fact
that the topology is a tree.

To prove the main theorem, we use an execution convergence lemma first
stated and proved in [Var93|. To state the theorem, we need the following
definition. Note that the definition below uses what are called predicate sets
as opposed to the link predicate sets used so far; the only difference is that
a predicate set contains sets of global states, as opposed to a link predicate
set, which contains sets of states of link subsystems.

We say that an /O automaton A is stabilized to predicate L using pred-
icate set £ and time constant ¢ if:

1. L={L;:i€ 1} of sets of states of A, where (I, <) is a finite, partially
ordered index set. We let height(L) denote the maximum length chain
in the partial order.

2. mie]Li == L

3. For all i € I and for all steps (s, 7, 5) of A, if s belongs to N;<;L;, then
S belongs to L;.

4. For every i € I, every execution « of A, and every state s in «, the
following is true. Suppose that either s € N;.;L; or thereisno L; < L;.
Then there is some state s € L; that occurs within time ¢ of s in «.

The first condition says there is a partial order on the predicates in L.
The second says that L becomes “true” when all the predicates in £ become
true. The third is a stability condition. It says that any transition of A leaves
a predicate L; true if all the predicates less than or equal to L; are true in
the previous state. Finally the last item is a liveness condition. It says that
if all the predicates strictly less than L; are true in a state, then within time
t after this state, L; will become true.

13
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We define height(L;), the height of a predicate L; € L, to be the maxi-
mum length of a chain that ends with L; in the partial order. The value of
height(L) is, of course, the maximum height of any predicate L; € L. By the
liveness condition, within time ¢ all predicates with height 1 become true;
these predicates stay true for the rest of the execution because of the third
stability condition. In general, we can prove by induction that within time
1 -t all predicates with height ¢ become and stay true. This leads to a simple
but useful lemma:

Lemma 3 (Execution Convergence) Suppose that 1/O automaton A is
stabilized to predicate L using predicate set L and time constant t. Then, A
stabilizes to the executions of A|L in time height(L) - t.

Proof of Lemma 3 By induction on h,0 < h < height(L), in the following
inductive hypothesis.

Inductive hypothesis: There is some state s that occurs within time h - ¢
of the start of a such that s € L; for all L; € £ with height(L;) < h.

The inductive hypothesis implies that there is some state s that occurs
within time h - height(L) of the start of @ and such that s € L. The lemma
follows from this fact. It also uses the fact that any suffix of an execution
that starts with a timed start state is also a valid execution (recall that we
have no lower bounds on the time between actions).

Base case, h = 0: Follows trivially since there isno L; € £ with height(L;) =
0.

Inductive step, 0 < h < height(L£) — 1: Assume it is true for h. Then
there is some state s; that occurs within time h - ¢ of the start of o and such
that for all L, € £ with height(L;) < h, s; € L;. Consider any L; € L
with height(L;) = h + 1. By the fourth condition in the definition of being
stabilized using a predicate set, we know there must be some state sy;) € L;
that occurs within time ¢ of s; in . Let k = Max{f(j) : height(L;) =
h+1}. Then, from the third and fourth conditions in the definition of being
stabilized using a predicate set, we see that s occurs within time (h+ 1) - ¢
of the start of a and such that for all L; € £ with height(L;) < h + 1,
s; € L;. (The third condition ensures that predicates L; and other established
predicates remain true.)

Proof of Lemma 3 O

However, to apply the previous lemma, we have to work with predicates
of TT (i.e., sets of states of 77) and not local predicates of 77 (i.e., sets
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of states of link subsystems of 7). This is just a technicality that we
deal with as follows. For each link subsystem (u,v), we define the predicate
L, =1{s: (slu,slv) € Lyy}. Clearly, L' =nNL,,.

Next, consider some wu, v, w such that v = parent(u) and w = parent(v).
We assume that v # nil. (But v may be the root in which case w is nil.)
The next lemma states an important stability property. It states that if L, ,
holds in some global state s of 7, it will remain true in any successor state
of s if either:

e v is the root, or

e [/ isalso true in s.

Lemma 4 Consider some u,v,w such that v = parent(u) # nil and w =
parent(v). Suppose there is some global state s of T™ such that s € L, ,, and
(w # nil) — s € L, ,,. Then for any transition (s,n,5), 5 € L, .

Proof of Lemma 4 It suffices to consider all possible actions 7 that can
be taken at either u or v in state s. It is easy to see that we don’t have to
consider correction actions because, by assumption, neither the CORRECT,,
or the CORRECT,, action is enabled in state s.

Consider a modified action a, of 7 that is taken at node u. Suppose
action a, occurs in state s and results in a state s. By the preconditions of
modified action a,, for all children z of u, (s|z, s|u) € L,,. But in that case
by Lemma 2 there is some other global state s’ € L’ such that: s'|u = s|u,
s'|lv = s|v, and §'|z = s|x for all children z of u. Thus by the third property
of a network automaton, the action a, is also enabled in s and, if taken
in s, will result in some state, say §. But since L’ is closed, 5 € L’ and
hence (§'|u, §'|v) € L,,. But by the third property of a network automaton,
5lu = &'|u and &|v = &'|v. Thus § € L, . The case of a modified action at v
is similar.

Proof of Lemma 4 O

The previous lemma also shows that our second assumption is safe. If
a modified action is taken at a node u, resulting in state s, then § € L,
for some v. Thus by Lemma 2 there is some other state § € L’ such that
§'|u = §|u. Thus §|u cannot have been removed as part of the normalization
step.
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The next lemma states an obvious liveness property. If L , does not
hold in some global state of 7T, then after at most t,,4. time units, we
will eventually reach some global state § in which L;, , holds. Clearly this
is guaranteed by the correction actions (either CORRECT, or CORRECT,,
depending on whether wu is the child of v or vice versa) and by the timing
guarantees.

Lemma 5 For any (u,v) link subsystem, any execution o of TT, and any
state s; of o, if s; € L., ,, then there is some later state s; € L, that occurs

u,v’

within tyode time units of s;.

Proof of Lemma 5 Suppose not. Then either CORRECT,, (if u is the child
of v) or CORRECT, (if v is the child of u) is continuously enabled for t,,q.
time units after s;. But then, by the timing guarantees, either CORRECT,
or CORRECT, must occur within ¢,,4. time after s;, resulting in a state in
which L, , (and, of course, L, ,) holds.

Proof of Lemma 5 0O

We now return to the proof of the main theorem. First we define a natural
partial order on the predicates L;, ,. For any link subsystem (u, v), define the
child node of the subsystem to be w if parent(u) = v and v otherwise. Define
the ordering < such that L, , < L;, , iff the child node of the (u, v) subsystem
is an ancestor (in the tree T') of the child node of the (w,x) subsystem.

Using this partial order and Lemmas 4 and 5, we can apply Lemma 3 to
show that 7™ stabilizes to the executions of 7T|L" in time height(T) - thode-
But any execution « of 7|L' is also an execution of 7|L. This follows from
three observations. First, since L’ is closed for 7, L is closed for 7. Second,
if L’ holds in all states of an execution a of 77|L/, then no correction actions
can occur in «. Third, any execution of 7|L’ is also an execution of 7|L
because L DO L'. Thus we conclude that 7 stabilizes to the executions of
T|L in time height(T) - thode-

This theorem can be used as the basis of a design technique. We start by
designing a tree automaton 7T that is locally checkable for some L. Next we
use the construction in the theorem to convert 7" into 7. 7 T stabilizes to the
executions of T|L even when started from an arbitrary state. The theorem
also provides the worst-case time to stabilization, which is an important
benefit.
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A mention of weakening the fairness requirement is in order. In the
previous construction, we assigned each CORRECT,, action to a separate class.
Actually, the theorem only requires a property we call eventual correction:
if a CORRECT, action is continuously enabled, then a CORRECT, action
occurs within bounded time. This property can be established quite easily
for the protocols in [Dij74] and [AG90], allowing all the actions in the entire
automaton to be placed in a single class!

5 A Reset Protocol on a Tree

Before describing the reset protocol due to Arora and Gouda [AG90], we
first describe the network-reset problem. Recall that we have a collection
of nodes that communicate by reading the state of their neighbors. The
interconnection topology is described by an arbitrary graph. Assume that
we are given some application protocol that is being executed by the nodes.
We wish to superimpose a reset protocol over this application such that
when the reset protocol is executed, the application protocol is “reset” to
some “legal” global state. A “legal” global state is allowed to be any global
state that is reachable by the application protocol after correct initialization.
The problem is called distributed reset, because reset requests may arrive at
any node.

A simple and elegant network-reset protocol is due to Finn [Fin79]. In this
protocol each node ¢ running the application protocol has a session number.
When the reset protocol is not running, the session numbers at every node
are the same. When a node receives a reset request, it resets the local state of
the application (to some prespecified initial state), and increments its session
number by 1. When a node sees that a neighbor has a higher session number,
it changes its session number to the higher number and resets the application.
Finally, the application protocol is modified so that a node cannot make a
move until its session number is the same as that of its neighbors. This check
prevents older instances of the application protocol from “communicating”
with newer instances of the protocol. This protocol is shown to be correct
[Fin79] if all the session numbers are initially zero and the session numbers
are allowed to grow without bound.?

5Finn also considered the problem of using bounded sequence numbers. His solution was
shown to be incorrect by Humblett and Soloway, who proposed a fix in [SH87]. However,
neither paper addresses the problem of designing a self-stabilizing reset protocol.
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We rule out the use of unbounded session numbers as unrealistic. Also, in
a stabilizing setting, having a “large enough” size for a session number does
not work. This is because the reset protocol can be initialized with all session
numbers at their maximum values. Thus, we are motivated to search for a
reset protocol that uses bounded session numbers. Suppose we could design
a reset protocol with unbounded numbers in which the difference between
the session numbers at any two nodes is at most one in any state. Suppose
also that for any pair of neighboring nodes u and v that compare session
numbers, the session number of one of the nodes (say u) is always no less
than the session number of the other node. Then, since the session numbers
are only used for comparisons, it suffices to replace the session numbers by a
single bit that we call sbit;. This is the first idea in Arora and Gouda’s reset
protocol [AG90].

To realize this idea, we cannot allow a node to increment its session
number as soon as it gets a reset request. Otherwise, multiple reset requests
at the same node would cause the difference in session numbers to grow
without bound. Thus nodes must coordinate before they increment session
numbers.

In Arora and Gouda’s reset protocol [AG90], the coordination is done
over a rooted tree. Arora and Gouda first show how to build a rooted tree in
a stabilizing fashion. In what follows, we assume that the tree has already
been built. Thus every node i has a pointer called parent(i) that points to
its parent in the tree, and the parent of the root is a special value nl.

Given a tree, an immediate idea is to funnel all reset requests to the root.
On receipt of a request, the root could send reset grants down the tree. A
node could increment its session number on receiving a grant. Unfortunately,
this does not work either, because a node A in the tree may send a reset
request and receive a grant before some other node B in the tree receives a
grant. After getting its first grant, A may send another request and receive a
second grant before B gets its first grant. Assuming that the session numbers
are unbounded, the difference in the session numbers of A and B can grow
without bound.

Instead, the reset task is broken into three phases. In the first phase, a
node sends a reset request up the tree toward the root. In the second phase,
the root sends a reset wave down the tree. In the third phase, the root
waits until the reset wave has reached every node in the tree before starting
a new reset phase. This ensures that after the system stabilizes, the use of
three phases will guarantee that a single bit sbit; is sufficient to distinguish
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instances of the application protocol.

The three phases are implemented by a mode variable mode; at each
node 7. The mode at node 7 has one of three possible values: init, reset, and
normal. All nodes are in the normal mode when no reset is in progress. To
initiate a reset, a node i sets mode; to init (this can be done only if both ¢
and its parent are in normal mode). A reset request is propagated upward
by the action PROPAGATE_REQUEST;, which sets the mode of the parent
to init when the mode of the child is init. A reset wave is begun by the
root by the action START_RESET which sets the mode of the root to reset.
The reset wave propagates downward by PROPAGATE_RESET;, which sets
the mode of a child to reset if the mode of the parent is reset. When a
node changes its mode to reset, it flips its session number bit, and resets
the application protocol. Finally, the completion wave is propagated by
the action PROPAGATE_COMPLETION;, which sets a node’s mode to normal
when all the node’s children have normal mode.

The I/O automaton code for this implementation is shown in Figures 2 and 3.
Notice that besides the actions we have already described, there is a CORRECT;
action in Figure 3. This action was used in an earlier version [AG90] to ensure
that the reset protocol was stabilizing.

Informally, the reset protocol is stabilizing if after bounded time, any reset
requests will cause the application protocol to be properly reset. The correc-
tion action in Figure 3 [AG90] ensures stabilization in a very ingenious way.
However, the proof of stabilization is somewhat difficult, and not as intuitive
as one might like. The reader is referred to [AG90] for details. Instead, we
will use local checking and tree correction to describe another correction pro-
cedure that is very intuitive. As a result, the proof of stabilization becomes
transparent.

We start by writing down the “good” states of the reset system in terms
of link predicates L; ;. We say that the system is in a good state if for
all neighboring nodes ¢ and j, the predicate L;; holds, where L;; is the
conjunction of the two predicates:

o If (parent(i) = j) and (mode; # reset), then (mode; # reset) and

o If (parent(i) = j) and (mode; = reset), then either:

— (mode; # reset) and (sbit; # sbit;), or
- (Sbltl = Sbltj)
19
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The state of the system consists of two variables for every process in the tree:
mode; € {init, normal, reset}
sbit;, a bit

PROPAGATE_REQUEST; (* internal action to propagate a reset request upward )

Preconditions: mode; = normal, i = parent(j) and mode; = init

Effects: mode; := init
START_RESET; (* internal action at root to start a reset wave )

Preconditions: mode; = init and parent(i) = nil

Effects:
mode; := reset; (x also reset application state at this nodex)
sbit; :==n~ sbit;; (= flip bit *)

PROPAGATE_RESET; (* internal action to propagate reset downwards *)
Preconditions:
mode; # reset j = parent(i), mode; = reset and sbit; # sbit;

Effects:
mode; := reset; (* also reset application state at this node x)
sbit; :==n~ sbit;; (= flip bit *)

PROPAGATE_COMPLETION; (* internal action to propagate completion wave up-
ward )

Preconditions:
mode; = reset and
For all children j of i: mode; = normal and sbit; = sbit;

Effects: mode; := normal

Every action is in a separate class with upper bound equal to ;04

Figure 2: Normal actions at node i in Arora and Gouda’s reset protocol
[AGI0]
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CORRECT; (x extra internal action for correction at node i *)

Preconditions:
J = parent(i) # nil, (mode; = mode;) and (sbit; # sbit;)

Effects: sbit; := sbit;

Every action is in a separate class with upper bound equal to ;04

Figure 3: Original correction action in Arora and Gouda’s reset protocol
[AGI0]

The predicates can be understood intuitively as describing states that
occur when the reset system is working correctly. The first predicate says
that if the parent’s mode is not reset, then the child’s mode is not reset and
the two session bits are the same. This is true when the system is working
correctly, because of two reasons: first, the child enters reset mode only when
its parent is in that mode, and the parent does not leave reset mode until
the child has left reset mode; second, if the parent changes its session bit,
the parent also goes into reset mode, and the child only changes its session
bit when the parent’s mode is reset.

The second predicate describes the correct states during the second and
third phases of the reset until the instant that the completion wave reaches
7. It says that if the parent’s mode is reset, then there are two possibilities.
If the child has not “noticed” that the parent’s state is reset, then the child’s
bit is not equal to the parent’s bit. (This follows because when the parent
changes its mode to reset, the parent also changes its bit; and just before such
an action the second predicate assures us that the two bits are the same.)
On the other hand, if the child has noticed that the parent’s state is reset,
then the two bits are the same. (This follows because when the child notices
that the parent’s mode is reset, the child sets its bit equal to the parent’s bit
and does not change its bit until the parent changes its mode.)

Suppose that in some state s these link predicates hold for all links in the
tree. Then [AG90] shows that the system will execute reset requests correctly
in any state starting with s. This is not very hard to believe, but it means
that all we have to do is add correction actions so that all link predicates
will become true in bounded time. But this can easily be done using the
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CORRECT_CHILD; (* modified correction action at nodes %)

Preconditions:
J = parent(i) # nil and L; ; does not hold

Effects:
sbit; := sbit; and mode; := mode;

All actions are in a separate class with upper bound t,,,4¢

Figure 4: Modified correction action for Arora and Gouda’s reset protocol.
All other actions are as in Figure 2.

transformation underlying the tree correction theorem that we just stated.
An even simpler correction strategy is described below.

The tree topology once again suggests a simple strategy. We remove the
old action CORRECT; in Figure 3 and add a new action CORRECT_CHILD;
as shown in Figure 4. Basically, CORRECT_CHILD; checks whether the link
predicate on the link between ¢ and its parent is true. If not, ¢ changes its
state such that L, ; becomes true. Notice that CORRECT_CHILD; leaves the
state of i’s parent unchanged. Suppose j is the parent of ¢ and £ is the
parent of j. Then CORRECT_CHILD; will leave L, true if L;; was true in
the previous state.

Thus we have an important stability property: correcting a link does not
affect the correctness of links above it in the tree. Using this, we can apply
Theorem 1 to show that all links will be in good states (and so the system
is in a good state) in time proportional to the height of the tree.

6 Dijkstra’s Mutual Exclusion Protocol

In this section, we show how to rederive an existing stabilizing protocol using
our theorem. The advantage of our presentation is that it provides a simple
and transparent proof. We reconsider the second example in [Dij74]. This
protocol is essentially a token-passing protocol on a line of nodes with process
indices ranging from 0 to n — 1. Imagine that the line is drawn vertically,
so that process 0 is at the bottom of the line (and hence is called “bottom”)
and process n — 1 is at the top of the line (and called “top”). This is shown
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Top (Process n — 1)

0 up = false
0 up = false
0 up = false Token

1 up = true

1 up = true

1 up = true

Bottom (Process 0)

Figure 5: Dijktra’s protocol for token passing on a line

in Figure 5. The down neighbor of process i is process i — 1, and the up
neighbor is process ¢ + 1. Process n — 1 and process 0 are not connected.

Dijkstra observed that it is impossible (without randomization) to solve
mutual exclusion in a stabilizing fashion if all processes have identical code.
To break the symmetry, he made the code for the “top” and “bottom” pro-
cesses different from the code for the others.

Dijkstra’s second example is modeled by the automaton D2, shown in
Figure 6. Each process ¢ has a Boolean variable up;, and a bit ;. Roughly,
up; is a pointer at node ¢ that points in the direction of the token, and z;
is a bit that is used to implement token passing. Figure 5 shows a state of
this protocol when it is working correctly. First, there can be at most two
consecutive nodes whose up pointers differ in value, and the token is at one
of these two nodes. If the two bits at the two nodes are different (as in the
figure), then the token is at the upper node; otherwise the token is at the
lower node.

For the present, assume that all processes start with z; = 0. Also, initially
assume that up, = false for all processes other than process 0. We do so only
so that the reader can first understand the correct executions of this protocol
after it has stabilized (or after it has been correctly initialized). We will
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The state of the system consists of a Boolean variable up;, and a bit x;, one for
every process in the line. We will assume that upy = true and up,,_; = false by
definition.

In the initial state, x; =0 for i =0...n — 1 and up; = falsefort =1...n — 1.
Move_Upy (* action for the bottom process only to move token up )

Precondition: xy = x; and up; = false

Effect: xp:=~ xg
MovE_DOWN,,_1 (x* action for top process only to move token down )

Precondition: x,_s # x,_1

Effects: x,_1:= x,—9
Move_Up;,1 < i <n—2 (x action for other processes to move token up *)

Precondition: xz; # x; 1

Effects:
x; = wxj—1 and up; := true (x point upward in direction token was
passed *)

MoveE_-DowN;, 1 <i <n —2 (x action for other processes to move token down )

Precondition:
T; = Tiy1, up; = true] and up; | = false
Effect:

up; := false (x point downward in direction token was passed )

All actions are in a single class with upper bound %4

Figure 6: Automaton D2: a version of Dijkstra’s second example with
initial states; the protocol does token passing on a line using nodes with at
most four states
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remove the need for such initialization when we describe the final stabilizing
automaton.

A process ¢ is said to have the token when any action at process i is
enabled. As usual, the system is correct when there is at most one token in
the system. Now, it is easy to see that in the initial state, only MOVE_UP,
is enabled. Once node 0 makes a move, then MOVE_UP; is enabled, followed
by MoVE_UP,, and so on, as the token travels up the line. Finally, the
“token” reaches node n — 1, and we reach a state s in which x; = x;,; for
t=0...n—3 and x,,_1 # x,_2. Also in state s, up, = truefori =0...n —2
and up,_, = false. Thus in state s, MOVE_DOWN,,_; is enabled, and the
token begins to move down the line by executing MOVE_DOWN,,_5, followed
by MOVE_DOWN,,_3, and so on, until we reach the initial state again. Then
the cycle continues. Thus in correct executions, the token is passed up and
down the line.

In the good states for Dijktra’s second example, the line can be parti-
tioned into two bands, as shown in Figure 7. All bit and pointer values
within a band are equal. (If a node within a band has up; = false, we sketch
it as a pointer that points downward). All nodes within the upper band point
downward and all nodes within the lower band point upward. The token is
at the boundary between the two bands. If the bit value X of the upper band
is equal to the bit value Y of the lower band, the token is moving downward;
if the two bit values are unequal, the token is moving upward.

We describe these “good states” of D2 (that occur in correct executions)
in terms of local predicates. In the shared-memory model, a local predicate
is any predicate that only refers to the state variables of a pair of neighbors.
We see that if two neighboring nodes have the same pointer value, then their
bits are equal; also, if a node is pointing upward, then so is its lower neighbor.
Thus in a good state of D2, two properties are true for any process ¢ other
than 0:

o If up, | = up,;, then z; 1 = x;.
o If up, = true, then up, ; = true.

First, we prove that if these two local predicates hold foralli =1...n—1,
then there is exactly one action enabled. Intuitively, since up,_; = false and
up, = true, we can start with process n —1 and go down the line until we find
a pair of nodes 7 and ¢ — 1 such that up, = false and up;,_; = true. Consider
the first such pair. Then the second predicate guarantees that there is exactly
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Figure 7: In the good states for Dijktra’s second example, the line can be
partitioned into two bands with the token at the boundary

one such pair. The first predicate then guarantees that all nodes j <7 —1
have x; = x;_1, and all nodes & > i have x;, = ;. Thus only one action is
enabled. If x; = x;_; and i — 1 # 0, then only MOVE_DOWN;_; is enabled.
If z; = x;_1 and i — 1 = 0, then only MOVE_UPy is enabled. If z; # z;_; and
1 # n — 1, then only MOVE_UP; is enabled. If x; # z; 1 and i = n — 1, then
only MOVE_DOWN,,_; is enabled.

A similar argument shows that if there is exactly one action enabled, then
both local predicates hold for all i =1...n — 1.

Let L be the predicate of D2 consisting of the states of D2 in which
exactly one action is enabled. It is easy to see that D2 is a tree automaton
that is locally checkable for L. Then we can use Theorem 1 to convert D2
into a new automaton D2%, which stabilizes to executions where there is
exactly one token in each state. The correction actions we add are once
again different from the original actions in [Dij74]. However, the correction
actions we add (and consequently, the proofs) are much more transparent
than the original version.
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7 Detailed Discussion of Related Work

In this section, we discuss some subtle differences between the work in this
paper and closely related works.

The original paper on local checking and correction [APV91] proved a local
correction theorem: any locally checkable protocol that met certain other
conditions (referred to as local correctability) can be stabilized. However,
that theorem does not imply our tree-correction theorem. In order to apply
the local correction theorem, one must exhibit a correction function with the
appropriate properties; this is not needed in tree correction. Also, the explicit
correction action used in local correction depends only on the previous state
of a node, whereas the implicit correction action used in the proof of tree
correction depends on the state of a node’s parent as well as the previous state
of the node. Finally, the definition of local checkability used in [APV91] is
stronger than ours. The previous definitions require that each local predicate
be a closed predicate. This is a strong assumption that we do not require.

Both local correction and tree correction are useful techniques that apply
to different problems. For example, local correction has been used to provide
stabilizing solutions to many problems on general graphs (e.g., synchronizers
[Var93] and end-to-end protocols [APV91]) for which tree correction is inap-
plicable. On the other hand, local correction does not seem applicable to the
reset protocol described in Section 5. This is because the correction action
(Figure 4) depends on the state of both the parent and the child. There are
still other problems (e.g., mutual exclusion on a tree [Var93|) for which both
techniques are applicable.

There has also been significant work in the Artificial Intelligence literature
on distributed constraint satisfaction. A constraint can be considered to be
a local predicate between two neighboring nodes, and the goal is to find a
solution that meets all constraints. A seminal paper® by Collin, Dechter,
and Katz [CDK91] considers the feasibility of self-stabilizing, distributed
constraint satisfaction, and shows that the problem is impossible in general
graphs without some form of symmetry breaking. However, the authors also
show that the problem is solvable in tree networks. Their basic procedure is
similar to ours: they use what they call an arc consistency step (similar to
our normalization step), and then each node chooses a value in its domain
that is consistent with its parent’s value.

6We are grateful to one of the referees for pointing out this reference.
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However, their tree protocol is limited to finding static solutions to con-
straint satisfaction. Thus constraint satisfaction can be used to solve a static
problem such as coloring, but not a dynamic problem such as mutual exclu-
sion or network reset. More precisely, constraint satisfaction seeks solutions
that converge to a fized point; our formulation seeks solutions that converge
to a closed predicate. Even after convergence to a closed predicate, protocol
actions continue to occur.

To allow this, we added an extra modification beyond the normaliza-
tion and local correction modifications needed by [CDK91]: we modified the
original protocol actions to add an extra guard to check whether all local
predicates are satisfied before the action is executed. This modification is
crucial to ensure stability of the local predicates (Lemma 4), which in turn
prevents oscillatory behavior (in which predicates are corrected for and then
become falsified by protocol actions). The proof of stability requires the no-
tion of local extensibility (Lemma 2). None of these notions are required for
the result in [CDK91].

Thus our theorem does not follow from the result in [CDK91]. How-
ever, the result in [CDKO91] applies to uniform tree networks—i.e., without
symmetry breaking in the form of parent pointers, as we have used. This
is done by a protocol that finds tree centers and directs each node’s parent
pointer toward its closest center [KPBG94]. We conjecture that the method
of [KPBGY4] could be applied to make our theorem applicable to uniform
tree networks. Also, [CDK91] has a number of other results on general net-
works, including a self-stabilizing procedure to find a feasible solution using
distributed backtracking.

Finally, [AGV94] also expresses local checkability conditions using con-
straint graphs. The formulation in [AGV94] applies to more general protocols
than the constraint satisfaction protocols of [CDK91]. However, none of the
theorems in [AGV94] imply our tree-correction theorem.

8 Conclusions

It may seem obvious that any locally checkable protocol on a tree can be
stabilized; however, it is a different matter to state and prove a precise result
that embodies this intuition. The proof requires some subtle notions such as
normalizing each automaton, the notion of local extensibility, and the need
to defend against unexpected transitions.
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Much of the initial work in self-stabilization was done in the context
of Dijkstra’s shared-memory model of networks. Later, the work on local
checking and correction was introduced [APV91] in a message-passing model.
A contribution of this paper is to show that existing work in the shared-
memory model can be understood crisply in terms of local checking and
correction. Protocols that appeared to be somewhat ad hoc are shown to
have a common underlying principle.

As argued at the beginning of this paper, we believe that message-passing
models are more useful and realistic. The definitions of network automata,
local predicates, local checkability, local correctability, and link subsystems
that we used in this paper are specific to shared-memory systems. The main
theorem in this paper states that any locally checkable protocol that uses a
tree topology can be efficiently stabilized. As the reader might expect, there
is a corresponding tree-correction theorem for message-passing systems. This
theorem is described in [Var93]. The theorem requires a lot more notation
to state. While the proof is similar, the reasoning is more tedious; thus, we
believe that the theorem stated in this paper conveys the essential ideas in
a much simpler fashion.

Appendix: Formal Summary of the I/0
Automaton Model

In this paper, we use the following model, which is a special case of the timed
[/O automaton model in [MMT91]. However, our terminology is slightly
different from that of [MMT91].

An I/0 automaton A consists of five components:

e A finite set of actions, actions(A), that is partitioned into three sets
called the set of input, output, and internal actions. The union of the
set of input actions and the set of output actions is called the set of
external actions. The union of the set of output and internal actions is
called the set of locally controlled actions.

e A finite set of states, called states(A).

e A nonempty set of start states, start(A) C states(A).
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e A transition relation R(A) C states(A) x actions(A) x states(A), with
the property that for every state s and input action a, there is a tran-
sition (s, a, 5) € R(A).

e An equivalence relation, part(A), partitioning the set of locally con-
trolled actions into equivalence classes, such that for each class ¢ in
part(A) we have a positive real upper bound ¢.. (Intuitively, ¢. denotes
an upper bound on the time to perform some action in class c.)

An action a is said to be enabled in state s of automaton A if there exist
some § € states(A) such that (s, a,§) € R(A). An action a is disabled in state
s of automaton A if it is not enabled in that state. Since one action may
occur multiple times in a sequence, we often use the word event to denote a
particular occurrence of an action in a sequence.

To model the passage of time, we use a time sequence. A time sequence
to,t1,t2,... is a nondecreasing sequence of non-negative real numbers; also
the numbers grow without bound if the sequence is infinite. A timed element
is a tuple (x,t) where ¢ is a non-negative real and x is an element drawn from
an arbitrary domain. A timed state for automaton A is a timed element (s, t)
where s is a state of A. A timed action for automaton A is a timed element
(a,t) where a is an action of A.

Let X = (zo,%0), (71,t1),... be a sequence of timed elements. We will
also use x;.time (which is read as the time associated with element z;) to
denote ¢;.

We say that element x; occurs within time ¢ of element z; if j > 7 and
xj.time < z;.time+t. We will use X.start (which is read as the start time of
X) to denote t.

Definition A.1 An execution a of automaton A is an alternating sequence
of timed states and actions of A of the form

(SOa t0>7 (ab tl)) (517 tl)a (0’27 t2)7 (327 tQ)a s
such that the following conditions hold:
1. sg € start and (s;,a;11,Si41) € R for all i > 0.

2. The sequence can either be finite or infinite, but if finite it must end
with a timed state.

3. The sequence ty,t1,ta,... 1S a time Sequence.
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4. If any action in any class c is enabled in any state s; of o, then within
time s;.time-+1., either some action in ¢ occurs or some state s; occurs
in which every action in c is disabled.

Notice that the time assigned to any event a; in « (i.e., a;.time) is equal
to the time assigned to the next state (i.e., s;.time). Notice also that we
have ruled out the possibility of so-called “Zeno executions,” in which the
execution is infinite but time stays within some bound.

Acknowledgement of support: George Varghese’s work is supported in
part by an ONR Young Investigator Award and NSF Grant NCR-9405444.

References

[AG90] Anish Arora and Mohamed G. Gouda. Distributed reset. In
Proceedings of the 10th Conference on Foundations of Software

Technology and Theoretical Computer Science, volume 472, pages
316-331, Berlin, 1990. Springer-Verlag.

[AGV94]  Anish Arora, Mohamed G. Gouda, and George Varghese. Con-
straint satisfaction as a basis for designing nonmasking fault-
tolerance. In Proceedings of the 14th International Conference on
Distributed Computing Systems, Poznan, Poland, February 1994.

[APV91]  Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
stabilization by local checking and correction. In Proceedings of

the 32nd IEEE Symposium on Foundations of Computer Science,
October 1991.

[CDK91] Z. Collin, R. Dechter, and S. Katz. On the feasibility of dis-
tributed constraint satisfaction. In Proceedings of the 12th 1JCAI
August 1991.

[Dij74] Edsger W. Dijkstra. Self stabilization in spite of distributed con-
trol. Communications of the ACM, 17:643-644, 1974.

[Fin79] Steven G. Finn. Resynch procedures and a fail-safe network pro-
tocol. IEEE Transactions on Communications, COM-27(6):840—
845, June 1979.

31

Chicago Journal of Theoretical Computer Science 1997-3



Varghese et al. Self-Stabilization by Tree Correction (Ref)

[KP90] Shmuel Katz and Kenneth Perry. Self-stabilizing extensions for
message-passing systems. In Proceedings of the 10th ACM Sym-

posium on Principles of Distributed Computing, Quebec City,
Canada, August 1990. ACM.

[KPBG94] M. Karaata, S. Pemmaraju, S. Bruell, and S. Ghosh. Self-
stabilizing algorithms for finding centers and medians of trees.
In PODC' 94, August 1994.

IMMT91] M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained
automata. In CONCUR 91, pages 408-423, 1991.

[Sch93] M. Schneider. Self-stabilization. ACM Computing Surveys, 25,
March 1993.

[SH87] Stuart R. Soloway and Pierre A. Humblett. On distributed net-
work protocols for changing topologies. Technical report LIDS-
P-1564, Massachussetts Institute of Technology, May 1987.

[VAG95]  George Varghese, Anish Arora, and Mohamed G. Gouda. Self-
stabilization by tree correction. In Proceedings of the 2nd Work-
shop on Self-Stabilizing Systems, Las Vegas, May 1995.

[Var93] George Varghese. Self-stabilization by Local Checking and Correc-
tion. PhD thesis, Massachussetts Institute of Technology, October
1993. Also Technical report MIT/LCS/TR-583.

32

Chicago Journal of Theoretical Computer Science 1997-3



