
Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1998, Article 3
7 December 1998

ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge,
MA 02142-1493 USA; (617)253-2889; journals-orders@mit.edu, journals-
info@mit.edu. Published one article at a time in LATEX source form on the
Internet. Pagination varies from copy to copy. For more information and
other articles see:

• http://mitpress.mit.edu/CJTCS/

• http://www.cs.uchicago.edu/publications/cjtcs/

• ftp://mitpress.mit.edu/pub/CJTCS

• ftp://cs.uchicago.edu/pub/publications/cjtcs

Afek and Bremler Self-Stabilizing Algorithms (Info)

The Chicago Journal of Theoretical Computer Science is abstracted or in-
dexed in Research Alert,R©SciSearch, R©Current ContentsR©/Engineering Com-
puting & Technology, and CompuMath Citation Index. R©

c©1998 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics
in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Editors: Martin Abadi Greg Frederickson John Mitchell
Pankaj Agarwal Andrew Goldberg Ketan Mulmuley
Eric Allender Georg Gottlob Gil Neiger
Tetsuo Asano Vassos Hadzilacos David Peleg
Laszló Babai Juris Hartmanis Andrew Pitts
Eric Bach Maurice Herlihy James Royer
Stephen Brookes Ted Herman Alan Selman
Jin-Yi Cai Stephen Homer Nir Shavit
Anne Condon Neil Immerman Eva Tardos
Cynthia Dwork Howard Karloff Sam Toueg
David Eppstein Philip Klein Moshe Vardi
Ronald Fagin Phokion Kolaitis Jennifer Welch
Lance Fortnow Stephen Mahaney Pierre Wolper
Steven Fortune Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

[ii]

Chicago Journal of Theoretical Computer Science 1998-3

Self-Stabilizing Unidirectional Network
Algorithms by Power Supply

Yehuda Afek Anat Bremler

7 December, 1998

Abstract

Power supply, a surprisingly simple and new general paradigm
for the development of self-stabilizing algorithms in different mod-
els, is introduced. The paradigm is exemplified by developing simple
and efficient self-stabilizing algorithms for leader election and either
breadth-first search or depth-first search spanning-tree constructions,
in strongly connected unidirectional and bidirectional dynamic net-
works (synchronous and asynchronous). The different algorithms sta-
bilize in O(n) time in both synchronous and asynchronous networks
without assuming any knowledge of the network topology or size,
where n is the total number of nodes. Following the leader election
algorithms, we present a generic self-stabilizing spanning tree and/or
leader election algorithm that produces a whole spectrum of new and
efficient algorithms for these problems. Two variations that produce
either a rooted depth-first search tree or a rooted breadth-first search
tree are presented.

1 Introduction

A distributed system is self-stabilizing if the system automatically enters a1-1

global legal state in a bounded amount of time after the last fault or cor-
ruption has occurred—regardless of the local state of each of its processors,
the level of RAM corruption in any processor, or the placement of messages
on its communication channels. Once in a legal and correct state, the sys-
tem remains in a legal state unless another fault or topological change has

1

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §1.1

occurred. The notion of self-stabilization was introduced by Dijkstra in 1974
[Dij74] and since then many algorithms for different problems and configura-
tions have been developed. Self-stabilizing algorithms for message passing or
shared memory systems were developed for either unidirectional or bidirec-
tional rings [Dij74, AB93, ALss, MOY96, MOOY92, Mul88, BP89, BGM90,
Her90, IJ93, KP90, AEYH92, BGW89] and for bidirectional arbitrary topol-
ogy networks [DIM94, AKY90, APSV91, AV91, BGW89, AG94b, AKM+93].
In this article, we develop simple and efficient self-stabilizing algorithms for
unidirectional, arbitrary, topology-dynamic networks. The techniques devel-
oped here also produce new simple and efficient algorithms for the bidirec-
tional case. In either case, our algorithms do not make any assumptions
about the network size or the messages and variables used in the algorithms.

The major obstacle in designing unidirectional self-stabilizing algorithms1-2

is the lack of acknowledgments. Bidirectional communication is heavily used
by the nodes in the bidirectional self-stabilizing system to compare the states
of neighboring nodes and to check their consistency, as, for example, in the
local checking algorithms [AKY90, APSV91, APSVD94].

In this paper, we overcome the lack of bidirectional communication with1-3

a new and surprisingly simple technique called power supply . Using this
technique, we present leader-election algorithms for synchronous (Section 3)
and asynchronous (Section 4) networks. Subsequently, we generalize these
algorithms (Section 5) with a new observation of Collin and Dolev [CD94]
to a family of algorithms either for electing a leader, or for constructing a
spanning tree. Two versions of the general algorithm produce a breadth-first
search (BFS) tree and a depth-first search (DFS) tree, with or without a
predistinguished leader; other versions are possible. Although there could
be as much as O(E) corrupted messages in a global state of the system, the
time complexities (stabilization times) for our algorithms are O(n) without
making any assumption about the size of the network. The space complexity
(overhead) of our algorithms is O(log n) bits per node.

1.1 The Paper in a Nutshell, and Related Works

The design of self-stabilizing algorithms for unidirectional networks has1.1-1

started to receive attention only in recent years with the works of Mayer,
Ostrovsky, and Yung [MOY96] and with Afek and Lev [ALss]. These works
have designed algorithms mostly for unidirectional rings, which leaves the
arbitrary topology open. Our work is motivated by these works and by the

2

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §1.1

requirements posed by SDH/SONET unidirectional networks [ALss].
Only a few non-fault-tolerant distributed algorithms for unidirectional1.1-2

networks have been developed in the past; see, e.g., [GA84, AG94a, GKA83,
GK84, Kut88, ELW90, Pet82, OW95, DKR82].

This paper proceeds from simple (Section 3) to more difficult (Sections 41.1-3

and 5). Let us enumerate the key ideas:

1. The basics. The basic algorithms developed are leader-election al-
gorithms that elect the smallest id as a leader. However, in self-
stabilization, simply choosing the smallest id is not safe, because a
fake id that is smaller than all the ids in the network may falsely be
chosen by all the nodes.

2. Addressing fake ids. A standard technique to overcome this problem
is to assign each node with its distance from the node whose identity
it has selected as a leader [Taj77, DIM94]. To ensure self-stabilization,
every node periodically checks that its distance is one more than its
parent distance (the parent is the neighbor through which the node has
discovered the leader with the distance parameter it believes in, which
is nil if the node under consideration is the root). Still, this principle by
itself is not sufficient, because, for example, a false id might circulate
around a cycle increasing its distance parameter without bound, and
the problem could go undetected.

3. Resolving a fake id’s effects. This problem has been overcome in several
different ways: in [DIM94] a predefined tree subnetwork was assumed;
in [AKY90] a special mechanism was developed to overcome the prob-
lem; in [APSV91, AV91] a reset protocol was invoked each time an
inconsistent situation was detected; and in [AG94b], the knowledge of
a bound b on the network diameter was assumed. In this paper, a new
technique is suggested, which has the advantage over the above strate-
gies in that it also works in unidirectional networks without making
any assumptions ([AG94b] also works in unidirectional networks but
requires the knowledge of a bound on the network size).

4. Power supply. “Power,” the first basic idea in this paper, has two parts.
First, a legal leader becomes a source of power which is disseminated,
while fake identities may not produce power (a legal leader is a node
that is the leader of itself). Second, to be captured by a new leader, a

3

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §2

node consumes a fixed amount of that leader’s power. Hence, fake ids
that have no source of power eventually disappear.

5. The synchronous case. The implementation of the “power” idea in a
synchronous network is simple: to be captured by a new idmin, a node
has to receive a message with idmin in two consecutive rounds from the
same neighbor and no smaller id from any other neighbor. However, if
after being captured by idx a node does not receive an idx message in
any one round, it immediately becomes the leader of itself.

6. The asynchronous case. The implementation of the above idea in an
asynchronous network is problematic, because on the one hand, nodes
in a self-stabilizing asynchronous network have to periodically transmit
messages; and on the other hand, the transmission of such messages
may “give” power to a fake id. This problem is solved here by dis-
tinguishing between two kinds of messages, weak and strong . Weak
messages have no power, and are sent periodically between neighbors
to ensure the consistency of the global state. Any inconsistency that
is detected causes the detecting node to become the leader of itself.
Strong messages, on the other hand, carry power. Only leader nodes
periodically produce strong messages. Every other node relays a strong
message to each of its neighbors only when it receives a strong message
from its parent. To be captured by a new id, idmin, a node has to re-
ceive two strong messages with idmin from the same neighbor, and at
the same time, this id is smaller than any other id it receives.

7. A generic self-stabilizing algorithm. In this discussion we introduce
another idea which is orthogonal to the power-supply concept. We
replace the minimum distance parameter (point 2 above) by a general
metric that may accommodate different parameters and rules for their
update, e.g., the beautiful and simple parameter introduced by Collin
and Dolev [CD94]. In combination with any of our other techniques
(e.g., power supply), this new metric generates a DFS tree (instead of
a BFS tree with the distance parameter) rooted at the elected leader.
An example of a third metric is given in Section 5.

4

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §2

2 The Model

We consider a unidirectional strongly connected network with a set V of n2-1

nodes and a set E of unidirectional links [AG94a]. A unidirectional link is
a point-to-point (node-to-node) communication line over which information
may flow in only one direction. We make the standard and realistic assump-
tion that each node v has a unique identity called idv.

An incoming link of a node is a link directed into the node, and an2-2

outgoing link of a node is the link directed away from that node. In the
asynchronous network, the number of messages that may be present on any
link at the same time is bounded by a constant B (independent of the net-
work size). This assumption is not only realistic, but is also necessary, as
it is shown in [DIM91] that almost any nontrivial task cannot be solved in
a self-stabilizing manner if link capacities are unbounded. However, when
bounded capacity links are used, a deadlock may be formed unless messages
are handled with care. In this article, we maintain a buffer for each outgoing
link (incoming link) where the last two different messages that could not
have been sent (received) because the link is too slow (too fast), are stored.
When the link (processor) becomes available again, these messages are the
first to be sent (processed). However, for the sake of clarity in describing the
algorithms, we disregard this mechanism; i.e., we assume bounded capacity
links exist, and that deadlocks are not formed. It is easy to see that the
two models are equivalent (see the remark at the end of Section 4 for more
details).

Our algorithms also recover from corrupted messages and transmission2-3

errors. During stabilization, after failures and topological changes stop, each
link is assumed to reliably transmit messages from the tail node to the head
node of the link. Each message that arrives at a node is tagged by the port
number over which it arrives, and messages are processed in the order of
arrival. Moreover, messages arrive at one end of a link in the order that
they have been sent from the other end (FIFO); otherwise, bounded-time
self-stabilization is prohibited.

Another assumption that we make (and without which no self-stabilizing2-4

message-passing algorithm may work in a dynamic network) is that each
node knows which of its incoming links are up and operational and which are
down. Otherwise, nodes might be stuck in the asynchronous case, waiting
for messages over a link that is no longer operational [AAG87].

In Section 3, we describe our power-supply algorithm in a synchronous2-5

5

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §3

network. All the processors in a synchronous network receive, at the same
time, an infinite sequence of evenly spaced clock ticks. In each clock tick
(pulse), the processor, based on its local state and on messages received from
its neighbors at the beginning of the pulse, makes a transition into a new
state and may send a message to any of its neighbors. Each message sent
immediately after a pulse is received by its destination before the next pulse.
The time interval between two consecutive clock pulses is called a round .

In an asynchronous network, the processors operate at arbitrary rates2-6

which might vary over time, and the messages incur unbounded and unpre-
dictable, but finite, delays.

The diameter of a network G whose set of nodes is V is defined as follows:2-7

diameter(G) = maxu,v∈V dist(u, v), where dist(u, v) is the number of edges
in the shortest directed path from u to v.

3 The Synchronous Unidirectional Power-
Supply Algorithm

Here we present a simple algorithm for synchronous unidirectional networks3-1

(see Figure 1). It stabilizes in O(n) rounds, and does not assume any bound
on the diameter or on any other parameter of the network. (We remark
that by a slight change in the algorithm, its stabilizing time may be reduced
to be proportional to the length of the longest simple path in the network,
which is O(n) for general networks. However, this change leads to much more
complex proofs, so we do not present it here).

In this algorithm, again the smallest node identity is elected as a leader.3-2

Fake ids are eliminated by using the distance parameter and the following
two rules:

1. to remain under the leadership of a leader L at distance d, d > 0, the
minimum leader message the node receives at each round should be L
with distance d − 1; and

2. to be captured for the first time by a leader L at distance d, the min-
imum leader message the node receives in two rounds in a row should
be L, with distance d − 1.

The first rule ensures that nodes owned by a fake leader and with the smallest
distance parameter overall (which is necessarily larger than zero) at a round

6

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §3.1

would abandon that leader in the next round. This ensures that the minimum
distance parameter associated with a fake leader increases by one in each
round. The second rule stipulates that the maximum distance parameter
associated with a fake leader cannot grow by one in every round; instead,
it can grow by one only every two rounds. It thus consumes the leader’s
power, because fake leaders do not have a power supply (a source for leader
messages). Therefore, if in the initial faulty state the number of distinct
distances associated with a fake leader is denoted as ∆d, then within at most
2∆d rounds that fake leader id vanishes (all of its power is consumed).

Once all fake ids have been eliminated, the smallest id in the network3-3

captures all the nodes, each with the correct shortest distance to the elected
leader.

Procedure for Node v
Type

leader info = record: [id, dist]
Var

idv {the unique id of node v, fixed by the hardware}
leader, new, prev: of type leader info
m: message of type leader info
M: set of messages of type leader info that have been received in the current round

Each round do
1 M := M∪{[idv , 0]};
2 new.id := minm∈M m.id;
3 new.dist := minm∈M{m.dist + 1|m.id = new.id};
4 If leader 6= new Then
5 If prev = new Then {second time the node receives the new information}
6 leader :=new;
7 Else {first time the node receives the new information}
8 leader :=[idv, 0] {Nodev becomes a self-leader};
9 prev :=new {saving the information from the last round};
10 send(leader record) on all outgoing links.

Figure 1: The synchronous algorithm

7

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §3.1

3.1 The Correctness of the Algorithm

For the proof of correctness, we consider the execution of the algorithm in3.1-1

the network following the last changes and faults; that is, we assume that
the execution starts in an arbitrary state, and that no faults or topological
changes occur during the execution.

Clearly, two rounds after the initial state, the variables (new, prev, and3.1-2

leader) at all the nodes hold values that were actually sent by their neighbors.
In the first theorem, we prove that in O(n) time after this state, all fake ids
disappear. In the second theorem, we prove that O(D) is the time after all
the fake ids have disappeared, where D is the diameter of the network. The
smallest id in the network is elected leader by all of the nodes.

In Theorem 1, we prove that fake leaders eventually disappear.3.1-3

Theorem 1 Eventually, all nodes in the variable leader have id ∈ ID, where
ID = {idv|v ∈ V }.
Let f id be a fake id in the network, i.e., f id /∈ V .

Definition 1 The heights group of the fake id f id in a state of the system
is:

heights(f id) = {leaderv.dist|∃v ∈ G, leaderv.id = f id}
We claim that for any fake id f id, the size of heightsf id is decreasing with3.1-4

time. In Lemma 1, it is proved that the size of heightsf id may not increase,
and in Lemma 2 it is proved that the size of heightsf id decreases every two
rounds.

Let Xi
v denote variable X at node v at round i.3.1-5

Lemma 1 |heightsr−1(f id)| ≥ |heightsr(f id)|

Proof of Lemma 1 The lemma follows from the code, since for each d ∈
heightsr(f id), d ≥ 2, there must have been a d− 1 ∈ heightsr−1(f id). Other-
wise, no node would have distance d in the current round. Specifically, a node
u whose leader is f id with distance d must have received in the beginning of
round r the message: [f id, d − 1] (by line 3). Hence, there must have been
an incoming neighbor of u, v, such that in round r − 1 leaderv :=[f id, d − 1].

Proof of Lemma 1 2

Lemma 2 ‖heightsr−2(f id)| > |heightsr(f id)|.
8

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §3.1

Proof of Lemma 2 By Lemma 1, for every d ∈ heightsr(f id), there is aProof of Lemma 2-1

d − 2 ∈ heightsr−2(f id). To prove the current lemma, we show that there
is at least one value dm in heightsr−2(f id) for which there is no dm + 2
in heightsr(f id). Let dm = max{heightsr−2(f id)}. Assume by contradiction
that dm+2 ∈ heightsr(f id), and that v is a node with leaderrv = [f id, dm+2].

Clearly, in round r − 2, leaderv 6=[f id, dm + 2].Proof of Lemma 2-2

Hence there are two possible cases: either leaderv = [f id, dm + 2] also inProof of Lemma 2-3

rounds r and r − 1, or, only at round r. We show that in either case, newr−1
v

= [f id, dm + 2], hence node v must have received a message [f id, dm + 1] in
round r − 1. Thus there has been a u, an incoming neighbor of v, such that
leaderu = [f id, dm + 1] in round r − 2, a contradiction.

In the first case, since leaderr−1
v = [f id, dm + 2], node v performs line 5,Proof of Lemma 2-4

and leaderr−1
v = newr−1 = [f id, dm + 2].

In the second case, since leaderrv = [f id, dm + 2], node v performs line 5,Proof of Lemma 2-5

and leaderrv = newr = prevr = [f id, dm + 2]. Since prevr = newr−1 (by line
9), newr−1 =[f id, dm + 2].

Proof of Lemma 2 2

Proof of Theorem 1 From the two lemmas, it follows that the size of
heights(f id) decreases by at least one every two rounds. Hence, Theorem
1 holds.

Proof of Theorem 1 2

Corollary 1 Within O(n) rounds after the last fault or topological change,
all fake ids disappear.

Theorem 2 At O(D) rounds after all fake ids have been eliminated, the
minimum id in the network is elected leader by all the nodes, where D is the
diameter of the network.

Proof of Theorem 2 Let IDv be the smallest id in the network. The theo-
rem follows by a simple induction on the rounds, because of the elimination
of all fake ids in round r0. Clearly, leaderv.id = IDv in round r0. In round
r0 + 2, every node u whose distance from v is one has v as its leader at
distance one. In round r0 + 2D, the leader of all the nodes is IDv.

Proof of Theorem 2 2

9

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §4

Corollary 2 The time complexity of this part is O(D).

Hence, the time complexity of the algorithm is O(n). Also, Ω(n) is the3.1-6

lower bound on the time complexity of our algorithm, as is shown in the
Appendix.

4 The Asynchronous Power-Supply Algo-
rithm

A fundamental characteristic of asynchronous self-stabilizing algorithms is4-1

that nodes have to periodically exchange messages with their neighbors (using
time-outs). Otherwise, the system could be placed in a global state in which
each node is waiting for a message from another node. This fundamental
characteristic breaks our power-supply algorithm, because every node in an
asynchronous environment spontaneously generates an unbounded number
of messages, regardless of the number of messages it receives.

Therefore, we introduce a new idea to implement the power-supply prin-4-2

ciple in an asynchronous network. We distinguish between two types of
messages: weak and strong . Weak messages are periodically sent by each
node to its neighbors, ensuring that neighboring nodes are in a consistent
state and no node is stuck waiting indefinitely for a message from the other
node. Strong messages, on the other hand, play the role of the power mes-
sages from the synchronous algorithm; that is, only leader nodes generate
strong messages spontaneously, and each of the other nodes sends one strong
message to each of its neighbors for every correct and consistent strong mes-
sage received over its parent port-id (the port through which a leader has
captured a node, by two consecutive strong messages; details below).

Specifically (the code is given in Figure 2), each node has a current leader4-3

record with an id field and a distance field as in the synchronous algorithm,
plus a parent pointer, which is either nil if the node is itself a leader or is
pointing to one of its ports. A node that is owned by another id becomes a
leader if its state is inconsistent with the neighbor’s message, which happens
in either of the following two cases:

1. it receives a message (weak or strong) through its parent port-id that is
different from its current leader; i.e., a message with an id different from
the node’s current leader.id or with a distance different from leader.dist,
or

10

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §4

Procedure at Node v:
Type

leader info = record: [id, dist]
Var

idv; {the unique id of node v, fixed by the hardware}
current leader,prev,msg: of type leader info;
parent: port-id;
set prev ports of {port-ids};

Upon receiving message (msg, mtype) arriving at incoming port-id p
1 if parent = nil then current leader := [idv, 0] {to be consistent};
2 if [idv, 0] ≤ lexic current leader then current leader := [idv, 0]; parent := nil;
3 if (p = parent) ∧ (msg = current leader)
4 then if (mtype = strong) then send neighbors(strong);
5 if (p = parent) ∧ (current leader 6= msg) {inconsistent message from the parent}
6 then current := [idv, 0];
7 parent := nil;
8 send neigbors(strong);
9 if (msg <lexiccurrent leader) then
10 if (mtype = strong) ∧ (prev = msg) ∧ (p ∈ prev ports)

{the second lexicographically smallest message}
11 then current leader := msg; {the node is captured}
12 parent = p;
13 send neigbors(strong);
14 else current leader := [idv, 0] {the first lexicographically smallest message};
15 parent := nil;
16 send neigbors(strong);

17 if (msg <lexic prev) then case(mtype) {updating prev and prev ports}
18 strong:prev = msg; prev ports := {p};
19 weak: prev = [idv, 0];prev ports := ∅;
20 if (msg = prev) ∧ (mtype = strong) ∧ (p /∈ prev ports) then prev ports := prev ports ∪ {p};
21 if (msg >lexic prev) ∧ (p ∈ prev ports) then prev ports := prev ports \ {p};

22 for every p ∈ prev ports {to make the algorithm work in a dynamic network}
23 if p is not alive then prev ports := prev ports \ {p};
24 if (prev ports = ∅) then prev := [idv, 0];
25 if (parent is not alive) then current leader := [idv, 0]; parent := nil

26 Procedure send neighbors(mtype)
27 send ([current leader.id, current leader.dist+1], mtype) to all neighbors;

28 Upon time-out() at node v
29 if parent = nil then send neighbors (strong);
30 else send neighbors (weak);

Figure 2: The asynchronous power-supply algorithm
11

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §4.1

2. it receives a message (msg), weak or strong, through any port-id that
is lexicographically smaller than current leader; i.e., either msg.id is
smaller than its current leader.id, or msg.id equals the current leader.id
and msg.dist is smaller than leader.dist.

A node that has been captured by a certain leader will be captured by a4-4

new leader only if either the new leader identity is smaller, or the new leader
identity is the same as the old one but the new leader comes with a smaller
distance parameter (that is, the new leader’s information is lexicographically
smaller than the old leader’s information).

4.1 The Principle of Power Supply

To be captured, two consecutive strong messages with the new lexicograph-4.1-1

ically smaller information must be received through the same port-id (i.e.,
with only consistently weak messages received through the port-id in be-
tween them), and at the same time no lexicographically smaller message can
arrive through any other port-id. The first lexicographically smaller message
to arrive immediately changes the current leader of the node to itself at dis-
tance zero, and only the second message changes the current leader to the
new information.

This principle ensures that strong fake-id messages eventually disappear4.1-2

from the network, since strong messages cannot flow in a cycle, and the
number of strong fake-id messages is reduced for each node being captured
by the fake id. On every path, the number of strong messages cannot increase,
because a node sends a strong fake-id message only in response to receiving
one. An important point for the proof of correctness is that whenever a
node changes its current leader, the node sends a strong message with its new
current leader. Thus all the neighbors of this node would notice that it went
through a state change. In particular, whenever node v that is owned by old
is being captured by a new leader, new, it assigns idv to its current leader
in between these changes and sends strong messages containing idv before
sending the new strong messages.

The implementation of the above in the code (Figure 2) uses a prev vari-4.1-3

able to store the smallest message body received in recent message exchanges,
and prev ports, which is the set of port-ids through which this new informa-
tion has arrived.

For the algorithm to operate correctly and in a self-stabilizing manner in4.1-4

12

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §4.2

a dynamic network, several local conditions have to be repeatedly checked; if
they are found inconsistent, they should be corrected. These conditions are:

• The link connected to the parent port-id should be up. If the parent
link is found to be down, then the node should become a leader of itself
(line 25).

• If any port-id in prev ports is found to be a port to a link that is down,
it is removed from the set. If the set prev ports becomes empty, then
prev is reset (lines 22–25).

• If the parent of node v is nil, then current leader has to be [idv, 0] and
vice versa (lines 1–2).

• If current leader.id is larger than the node’s id, then again current leader
is reset to [idv, 0] (lines 1–2).

• Each message must conform to the expected syntax, and negative num-
bers are not allowed. A node that receives an illegal message becomes
a leader of itself.

Since the asynchronous algorithm is an instance of the generic algorithm,4.1-5

its time complexity is O(n), as we show for the generic algorithm. Similarly,
the correctness of the algorithm follows from the proof of correctness for the
generic algorithm given in Section 6.

4.2 A Remark about the Model

As stated in Section 2, the number of messages on a link in a certain state4.2-1

is bounded by B. Thus if either a tail node tries to transmit faster than
the rate of the link, or if a receiving head node is too slow to receive the
messages at the rate they arrive over the link, messages might be lost. For
our algorithms, this does not pose a problem. We assume that at both end
ports of a link there is a process that works as follows: at each end port, the
link keeps a buffer with room for two messages. At the outgoing end (tail),
whenever the algorithm produces messages at a rate higher than the link
rate, the process keeps the last two different messages that were not sent.
These messages will be sent out as if the two-message buffer were part of the
link.

13

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §5

Similarly, at the receiving end, the process maintains a two-message buffer4.2-2

that contains only the last two different messages that have arrived and have
not been processed by the algorithm. This ensures that if a node changes its
state several times, the last change will never be lost, and each of the node’s
neighbors will notice that it went through a state change.

5 A Generic Power-Supply Algorithm

The two self-stabilizing algorithms presented in Sections 3 and 4, and most of5-1

the other algorithms known [DIM94, AKY90, APSV91, AG94b, AKM+93],
rely on the distance parameter, i.e., on the fact that each node selects the
node closest to the leader and updates its distance to be one more. Yet, in
[CD94], Collin and Dolev present a self-stabilizing algorithm that relies on
another metric, which in turn produces a DFS tree rather than a BFS tree.
These results suggest that perhaps there is a basic principle unifying these
metrics. In this section, we develop a generic algorithm into which different
metrics may be plugged, e.g., one of the above two, or new ones. An example
of such a new metric is given below.

The general algorithm produces a whole spectrum of self-stabilizing al-5-2

gorithms for both unidirectional and bidirectional networks, and is given in
Figure 4. The algorithm is a combination of the power-supply principle from
the previous sections, with a general scheme to produce spanning trees. The
BFS principle as in [Taj77] is one instance of the general scheme to construct
a BFS spanning tree, while the Collin-Dolev principle given in [CD94] is
another instance producing a DFS.

From any initial state, the generalization guarantees to stabilize in O(n)5-3

time units if the underlying principle that ensures a tree structure does not
send huge amounts of information (i.e., as long as the message size is kept
to O(log n) bits, or in a model that allows sending large messages in one
time unit). If messages are larger than the model can allow, then the time
complexity might be larger.

Let us first describe the underlying principles and properties of the family5-4

of tree-producing schemes that fit our general algorithm. All of these schemes
work according to the following general mechanism: each node that is a
candidate for leadership has a unique value called the zero of that node. In
the algorithms for constructing a tree rooted at a predistinguished node, only
that predistinguished node is a candidate.

14

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §5

The Type Info
case ALGORITHM:

LE + BFS, LE + DFS, LE + FP, FP: Type info = record: [id, param];
BFS, DFS: Type info = record: [param];

The value zero type info at node v:
case ALGORITHM:

LE + BFS: zero := [idv, 0];
LE + DFS, LE + FP: zero := [idv, ⊥];
BFS: if v is the root then zero := [0];

else zero := [∞];
DFS: if v is the root then zero := [⊥];

else zero := [∞];
FP: if v is the root then zero := [0,⊥];

else zero := [∞,⊥];

If v is a root then parent := nil;

Function next(selected of type info, p of type port-id): info
case ALGORITHM:

FP, LE + FP, LE + DFS:return [selected.id, selected.param ◦ p];
LE + BFS: return [selected.id, selected.param + 1];
BFS: return [selected.param+1];
DFS: return [selected.param ◦ p];

Function select(selected of type info, msg of type info): info
case ALGORITHM:

BFS + LE, DFS + LE, BFS, DFS:if msg <lexic selected
then return msg;
else return selected;

FP, LE + FP: if (idv /∈ msg.param) ∧
((idv ∈ selected.param) ∨ (msg.id < selected.id))
then return msg;
else return selected;

Figure 3: The generic framework

15

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §5

The zero value of each candidate is fixed in hardware (i.e., in stable and5-5

reliable memory), and it is usually based on the node’s unique identity. In
the algorithm, each candidate tries to “convince” all other nodes to choose its
zero value as their selected values, and thus to capture them. To do so, every
candidate suggests that each of its neighbors should be its selected parent,
by sending each neighbor a special value computed by applying a function
called next on the zero value. Each node v selects (according to a particular
selection rule) one of the suggestions it receives, assigns it to its selected
variable, and selects the link over which it arrives as its parent. Node v
transitively suggests its neighbors should join the same selected candidate by
sending them a special message computed by again applying the function next
on v’s selected value. This process continues transitively until one candidate
captures the entire network. The process thus described constructs a tree
structure that traces the paths along which the zero value of the tree root
has disseminated.

For such a scheme to generate a self-stabilizing algorithm when combined5-6

with the power-supply technique, it has to satisfy particular characteristics.
Each such scheme has three components: (1) the next function, used to
compute the suggestions; (2) the selection rule, which each node applies to
choose its selected variable from the suggestions it receives; and (3) a set of
zero values, which are all the zero values of nodes in the network. This set
of zero values has to satisfy the following three properties:

1. No legal sequence of selected values along a path may cycle; that is, in
any cycle of parent links and selected values, at least one node locally
detects (by observing its predecessor selection and its own selection)
that its selected value is wrong.

2. If there are no faults or erroneous values, then exactly one candidate
node captures the whole network. This node does not select a parent
link (its parent is nil).

3. If there are no faults or erroneous values, then the process reaches a
fixed point: the network reaches a state after which no node changes
its selection.

Any scheme that satisfies these properties reaches a stable state in which5-7

the parent links induce a rooted tree spanning the network. Different

16

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §5

schemes’ next functions, selection rules, and sets of zero values produce dif-
ferent trees. In this paper, three basic schemes are used that produce a BFS
tree, a DFS tree, or an arbitrary tree.

A scheme that satisfies the above guidelines to construct a DFS tree was5-8

given by Collin and Dolev [CD94]. The zero of a root node in that variation
is the symbol ⊥, and the selected value of each node is a string of output
port-ids along a simple path from the root (candidate for leadership) to that
node. The selection rule selects the neighbor such that its next selected value
(or sequence of link ports) is lexicographically smallest. Note that in this
case the next function also takes the port-id leading to each neighbor as a
parameter.

In another example of the generic algorithm, each node maintains the5-9

sequence of nodes on a path from the root to itself. In the generic implemen-
tation, each node v selects and extends the list of a neighbor whose list does
not include v.

The different variations of the scheme are specified in Figure 3, for inclu-5-10

sion with the power-supply code in Figure 4. We present the parameterization
of the zero values, the next function, and the selection rules to produce the
following variations:

1. a leader-election algorithm that also produces a rooted breadth-first
search tree (as denoted in the previous section as LE + BFS);

2. a leader-election algorithm that also produces a rooted depth-first
search tree (denoted as LE + DFS);

3. an algorithm that produces a BFS tree, given a distinguished root
(denoted as BFS);

4. an algorithm that produces a DFS tree, given a distinguished root
(denoted as DFS);

5. a leader-election algorithm that produces an arbitrary rooted tree (de-
noted as LE + FP); and

6. an algorithm that produces an arbitrary tree, given a distinguished root
(denoted as FP).

The various schemes satisfy each property in different ways. In the BFS5-11

and DFS schemes, the no-cycle property is satisfied, because the set of all

17

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.1

possible suggestions and zero values is a total ordered set; and, for any value
x, next(x) > x.

In the third scheme, FP, the no-cycle property is trivially satisfied since5-12

each suggestion is a string of ids, and the function next at node v simply
appends idv to v’s selected string. A node does not select a suggestion that
contains its own id.

The no-cycle property together with the power-supply technique ensures5-13

that any phony suggested value eventually disappears.
The formal proof of the algorithm’s properties is given in Section 6.5-14

Note that in the cases involving a predistinguished leader (BFS or DFS),5-15

it is unnecessary for each node in the system to have a unique id. The time
complexity of the general algorithm is O(n) (proof in Section 6). In the case
of a BFS with a predistinguished leader, the time complexity is lower, O(D),
which is also the optimal time complexity for this problem.

6 Correctness of the Generic Asynchronous
Algorithm

6.1 The Central Theorem

In this section we prove the main theorem.6.1-1

Theorem 3 Within O(nB) units of time after the last topological change or
erroneous state change, a stable tree spans the network.

There are three major steps in the proof:6.1-2

• First, we show that in linear time after the last change or error in the
network, all erroneous and illegal strong messages disappear (Lemma
4), and are never generated again.

• Second, we show that in O(n) time after the first step, erroneous or ille-
gal weak messages do not exist, and are never generated again (Lemma
6).

• Third, we show that in O(n) time after the second step, a stable rooted
tree spans the network (Lemma 8).

Let us start with some definitions:6.1-3

18

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.1

Procedure at Node v
Type

info = record: [id, param]
Var

selected,prev,msg: of type info;
parent: port-id;
set prev ports of {port-ids};

Upon receiving message (msg, mtype) arriving at incoming port-id p
1 if parent = nil then selected := zero {to be consistent};
2 if (select(selected, zero) = zero) then selected := zero; parent := nil
3 if (p = parent) ∧ (msg = selected) {send a message}
4 then if (mtype = strong) then send neighbors(strong);
5 if ((p = parent) ∧ (selected 6= msg)) {inconsistent message from the parent}
6 then selected := zero;
7 parent := nil;
8 send neighbors(strong);
9 if (select(selected, msg) = msg) then
10 if (mtype = strong) ∧ (prev = msg) ∧ (p ∈ prev ports){the second selected message}
11 then selected := msg; {the node is captured}
12 parent = p;
13 send neighbors(strong);
14 else selected := zero; {the first selected message}
15 parent := nil;
16 send neighbors(strong);

17 if (select(prev, msg) = msg) then case(mtype) {updating prev and prev ports }
18 strong:prev = msg; prev ports := {p};
19 weak: prev = zero;prev ports := ∅;
20 if (msg = prev) ∧ (mtype = strong) ∧ (p /∈ prev ports) then prev ports := prev ports ∪ {p};
21 if (select(prev, msg) 6= msg) ∧ (p ∈ prev ports) then prev ports := prev ports \ {p};

22 for every p ∈ prev ports {to make the algorithm work in a dynamic network}
23 if p is not alive then prev ports := prev ports \ {p};
24 if prev ports = ∅ then prev := zero;
25 if (parent is not alive) then selected := zero;parent := nil;

26 procedure send neighbors(mtype)
27 for every p ∈ prev ports
28 send (next(selected, p), mtype) to neighbor p;

29 upon time-out() at node v
30 if parent = nil then send neighbors (strong);
31 else send neighbors (weak);

Figure 4: The generic power-supply algorithm
19

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.1

Definition 2 Two functions are associated with each message m: mtype(m),
the type of the message (strong or weak), and msg(m), the body of the mes-
sage, which is of type info (see the code).

Definition 3 A message sequence, denoted by ~m = {m1m2, . . . , mk}, is a
contiguous sequence of messages (strong and weak) on a link such that they
all have the same msg value.

Remark 1 A message sequence can be empty.

Definition 4 We denote by in portv(w) the port id through which the (wv)
link enters v. We denote by out portv(w) the port id through which the (vw)
link leaves v.

If we observe the edges that are covered by the union of message sequences6.1-4

that appear to have been originated from the same candidate, then this
structure may look like a forest. However, in the proof, it is easier and much
simpler to argue about the union of such sequences along a path, rather than
along the edges of a tree. Below we formally define such sequences as blocks .
Clearly, if we prove statements like “there are no more blocks with property
p in the network,” then it is true that the same holds for the corresponding
trees with the same property. Therefore, it is enough to consider blocks, as
defined below, rather then the more complicated trees.

Definition 5 A block—denoted by bl = {~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0—is
a sequence of messages interleaved with zero or more nodes in one state of
the system, such that the following hold (see Figure 5):

1. {v0, v1, . . . vl} is a directed path.

2. For i = 0, . . . , l + 1, ~mi = {mi,1mi,2, . . . , mi,k0 } is a message sequence
on the link from vi to vi+1. Except for ~ml+1, each ~mi contains all the
messages on the corresponding link. If ~m0 is not empty, then m0,k0 is
the first message on the link entering v0, and we denote by begin port
the port-id at node v0 through which message m0,k0 arrives. If ~m0 is
empty, then begin port is a port-id of some incoming neighbor of v0.
If ~ml+1 is not empty, then ml+1,0 is the last message sent by vl on the
corresponding outgoing link and we denote by end port the port-id at
node vl through which message ml+1,0 was sent.

20

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.1

3. For i = 0, . . . , l, for all m ∈ ~mi, msg(m) = selectedvi
.

For i = l + 1, for all m ∈ ~ml+1, msg(m) = next(selectedvl
, end port).

4. For i = 0, . . . , l − 1, next(selectedvi
, out portvi

(vi+1)) = selectedvi+1.

5. For i = 1, . . . , l, parentvi
= in portvi

(vi−1).
For i = 0, parentv0

= begin port.

6. There is no v in G such that {v~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0 satisfies
conditions 1–5, and there is no message m such that
{{m} ∪ ~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0 satisfies conditions 1–5.

Observation 1 The maximum number of nodes in a block is n.

Observation 2 Every block induces a simple directed path.

Observation 2 follows from point 4 of Definition 5 and from the particular6.1-5

properties of the spanning-tree construction scheme. The no-cycle property
has to be proved separately for each spanning-tree scheme that is used. It
is easy to verify the property for the three major schemes we use: the BFS,
DFS, and FP (see the discussion in the previous section).

Definition 6 The potential(bl) of a block bl is the total number of strong
messages in the block (see Figure 5).

Corollary 3 The potential of a block is at most nB.

Were we proving the leader-election algorithm of Section 4, we would6.1-6

argue that blocks with fake ids eventually disappear. However, in the generic
algorithm we have generalized the notion of id, and thus we define the notion
of a phony block as follows.

Definition 7 A block {~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0 is a phony block, if
this block is a result of a “maliciously” erroneous initial state; that is, a
block that was created after state s0 and was truncated may not be considered
to be a phony block. Formally, a block {~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0 is a
phony block, if there is no way to assign values to selected fields of nodes
v−h, v−(h−1), . . . , v−1 such that {v−h, v−(h−1), . . . , v−1 ~m0v0 ~m1v1 . . . ~mlvl ~ml+1}
is a legal block and selectedv−h

equals zerov−h
(see Figure 5).

21

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.1

Definition 8 Let {~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0 be a block. Then m0,0 is the
tail of the block, or if ~m0 is empty, then v0 is the tail of the block. Similarly,
ml+1,kl+1 is the head of the block, or if ~ml+1 is empty, then vl is the head of
the block (see Figure 5).

Definition 9 A subblock is a subsegment of a block that satisfies all the
conditions of Definition 5, except condition 6 (see Figure 5).

Observation 3 Every block is also a subblock.

Proof of Theorem 3 (The Formal Proof) The proof argues about runsPreoof of Theorem 3-1

of the system that start in an arbitrary state s0 and in which there are no
failures or topological changes. Starting in state s0, the system behavior is
modeled by a run, which is an infinite sequence q0π0q1π1 . . . of alternating
states and atomic operations, such that q0 = s0. Each atomic operation
πi is either receiving and processing a message, and sending any resulting
message, or a time-out event that results in sending messages. Each state
includes a complete description of all the variables and messages in all the
processors of the system. State qi+1 is the state of the system after applying
operation πi to state qi.

For the purpose of time-complexity analysis, we assume that each messagePreoof of Theorem 3-2

is delivered in at most one unit of time, i.e., one unit of time is the time it
takes the slowest message to reach its destination.

We proceed by proving that following global state s0, the system mustPreoof of Theorem 3-3

progress through a sequence of global states that contains subsequence s0,
s1, s2, s3, and s4, such that in each of these states an additional global and
stable property holds until in state s4 the desired spanning-tree property
stably holds. The sequence of stable properties that hold in the run suffixes
starting at states s0, s1, s2, s3, s4 are correspondingly as follows:

1. Starting with global state s0, there are no failures or topological changes
by assumption.

2. Starting with global state s1, all messages and all state variables
(parent, selected, prev,prev ports) hold values that result from recep-
tion of messages sent after s0. It is easy to see that state s1 is at most
two time units after state s0.

22

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.1

50 30 23 11

s

[5,2]

s

[5,2]

w

[5,1] [5,3]

w

[23,3][5,1]

s

[5,1][50,0] [5,2]

s

Tail Head

Subblock

Block with potential equal to 4

Figure 5: An example of a block, including the head and tail of a block,
the potential, a phony block, and the subblock. The example is given in the
framework of LE + BFS. Each node has an id. Under the node we see the
node record [leader, distance], and similarly, the record of the messages on

the links. We symbolize the type of message by s for strong and w for
weak. The block in the figure is

{m0,1 = [s, [5, 1]], m0,2 = [w, [5, 1]], v1 = {idv = 30, [5, 1]}, m1,1 =
[s, [5, 2]], m1,2 = [w, [5, 2]], v2 = {idv = 50, [5, 2]}, m2,1 = [5, 3]}. The

potential of the block is 4, which is the number of strong messages in the
block. The message m0,1 = [s, [5, 1]] is the head of the block, and the

message m2,1 = [5, 3] is its tail.
The sequence {m0,1 = [w, [5, 1]], v1 = {idv = 30, [5, 1]}, m1,1 =

[s, [5, 2]], m1,2 = [w, [5, 2]], v2 = {idv = 50, [5, 2]}, m2,1 = [5, 3]} is an example
of a subblock, in the same way as any other suffix of the block.
The sequence {m0,1 = [w, [5, 1]], v1 = {idv = 30, [5, 1]}, m1,1 =

[s, [5, 2]], m1,2 = [w, [5, 2]], v2 = {idv = 50, [5, 2]}, m2,1 = [5, 3]} is an example
of a subblock, in the same way as any other suffix of the block. (Sec 6.1)

23

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

3. Starting from global state s2, there are no erroneous and illegal strong
messages in the network.

4. Starting from global state s3, there are no erroneous or illegal weak
messages in the network.

5. Starting from global state s4, a stable rooted tree spans the network.

Proof of Theorem 3 2

6.2 Proof Intuition

In the first (and major) step of the proof we show that phony blocks even-6.2-1

tually disappear, by arguing that the lifetime of a phony block is bounded
by the potential of the block (i.e., the potential of a phony block monotoni-
cally decreases). The potential of a phony block (by Definition 6) equals the
maximum number of new nodes that the phony block may capture before
disappearing (because the potential is the total number of strong messages,
and the capture of a new node consumes at least one strong message). Once
all the phony blocks disappear, the system reaches a stable legal state in
O(n) time.

Intuitively, the proof that phony blocks disappear after O(nB) time is6.2-2

based on the following three points:

• P1: By Observation 2, a block cannot cycle.

• P2: A new node can be added to a block only if it is captured by
two strong messages sent from the block (the power-supply principle).
Therefore, in capturing a node, the phony block potential decreases by
one.

• P3: The potential of a phony block cannot increase. It can only increase
if one of the following conditions exists:

1. it has the power supply to generate new strong messages (this is
obviously not true in a phony block); or

2. two or more phony blocks are united, thus creating a larger poten-
tial. But blocks cannot unite, because whenever a node changes
its state, it first sends a message with its zero state to each of
its neighbors. Upon receiving this message, each of the neighbors

24

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

that is at the same block as the node also goes through a change.
Thus, an element (message or node state) separating blocks never
disappears (until the blocks it separates disappear).

Based on points P1 and P2, in O(nB) time after the initial state, the6.2-3

potential of a phony block reduces to zero. To observe this, let us track any
strong message m on a phony block until it disappears. In each time-unit
message, m propagates at least one more node along the phony block. The
length of the phony block thus traversed is at most n+nB +1, with n nodes
in the original block, and nB + 1 that may be captured until its potential
reaches zero. Therefore, after O(nB) units of time, there is no strong message
in any phony block, and the block potential is zero. Based on point P1, a
phony block disappears in O(n) time after its potential is equal to zero.

In Lemma 3, we prove that the potential of a phony block does not6.2-4

increase after state s1 (point P3); i.e., distinct blocks cannot join together
into a larger block. More formally, if in state qi+1 there is a block with m
nodes, then in state qi there is a corresponding block with at least m − 1
nodes and with at least as many strong messages. In the lemma we address
all possible events and show that the potential does not increase in any of
them.

Let Xi
v denote variable X at node v in state qi.6.2-5

Lemma 3 Let qi+1 be a state, after state s1. If in state qi+1 there exists a
phony block bl i+1 = {~m0v0 ~m1v1 . . . ~mlvl ~ml+1} l ≥ 0, then in state qi there is
a subphony block sbl i, and exactly one of the following holds:

1. Node vj receives a weak message: sbl i = { ~m′
0v0 ~m′

1v1 . . . ~m′
l−1vl−1 ~m′

lvl
~m′

l+1}.

Only one message sequence, ~m′
j, 0 ≤ j ≤ l + 1 in sbl i, is not the

same as in bl i+1. Let ~m′
j = {mj,1 . . . mj,kj−1mj,kj

} in state qi. Then
~mj = {mj,1 . . . mj,kj−1} in state qi+1, where mj,kj

is a weak message
and kj ≥ 1.

2. Node vj sends a weak message: sbl i = { ~m′
0v0 ~m′

1v1 . . . ~m′
l−1vl−1 ~m′

lvl
~m′

l+1}.

Only one message sequence, ~m′
j, 1 ≤ j ≤ l + 1 in sbl i, is not

the same as in bl i+1. Let ~m′
j = {mj,1 . . . mj,kj

} in state qi. Then
~mj = {m′mj,1 . . . mj,kj

} in state qi+1, where m′ is a weak message.

3. Node vj receives a strong message and sends a strong message: sbl i =
{ ~m′

0v0 ~m′
1v1 . . . ~m′

l−1vl−1 ~m′
lvl

~m′
l+1}. Only two message sequences, ~m′

j

25

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

and ~m′
j+1, 0 ≤ j ≤ l in sbl i are not the same as in bl i+1. Let

~m′
j = {mj,1 . . . mj,kj−1mj,kj

} and ~m′
j+1 = {mj+1,1 . . . mj+1,kj

} in state
qi. Then ~mj = {mj,1 . . . mj,kj−1} and ~mj+1 = {m′mj+1,1 . . . mj+1,kj

},
where mj,kj

and m′ are strong messages.

4. A node that is not in the block receives ml+1,kl
, a strong message from

the block: sbl i = { ~m′
0v0 ~m′

1v1 . . . ~m′
l−1vl−1 ~m′

lvl
~m′

l+1}. Only ~m′
l+1 in

sbl i is not the same as in bl i+1. Let ~m′
l+1 = {ml+1,1 . . . ml+1,kl−1ml+1,kl

}
in state qi. Then ~ml+1 = {ml+1,1 . . . ml+1,kj−1} in state qi+1, where
ml+1,kl

is a strong message.

5. A new node is added to the block after receiving a strong message from
the block: sbl i = { ~m′

0v0 ~m′
1v1 . . . ~m′

l−1vl−1 ~m′
l}. ~m′

l in sbl i is not the
same as in bl i+1; and both vl and ~ml+1 in bl i+1, but not in sbl i. Let
~m′

l = {ml,1 . . . ml,kl−1ml,kl
} in state qi. Then ~ml = {ml,1 . . . ml,kj−1} in

state qi+1. In operation πi, vl changes its state and is captured to sbl i

after it receives the strong message ml,kl
and sends the strong message

m′, where ~ml+1 = {m′}.
6. The block did not change: bl i+1 = sbl i.

Before we prove the lemma, we will state and prove a few claims that are6.2-6

used in the proof of the lemma.

Claim 1 If parentiw 6= nil in state qi, which is after s1, then selectedi
w is equal

to the body part of the last message received through port parentiw.

Proof of Claim 1 Let πj be the last operation before state qi in which aProof of Claim 1-1

message m is received over port parentiw. By the time-out procedure and by
the definition of state s1, such a πj exists. The value of parentw does not
change in all the states from qj+1 to qi, because if it changes in πk, then it
changes either to nil or to the port over which a message was received in πk

(lines 11–13).
Since by the code, whenever the value of selected changes, the value ofProof of Claim 1-2

parent changes too, neither selectedw has changed in any state from state
qj+1 to qi. Thus selectedj+1

w = selectedi
w. To complete the proof, we need

to show that selectedj+1
w = msg(m). We consider two cases: either selectedw

changes in πj, or it does not change. In the former, selectedj+1
w = msg(m) by

lines 11 and 12; and in the latter, selectedj+1
w = msg(m) by line 5.

Proof of Claim 1 2

26

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

Claim 2 If previ
v 6= zerov in state qi which is after s1, then prev ports 6= ∅,

and for every p such that p ∈ prev portsi
v, previ

v equals the body part of the
last message received through port p at operation πj, and p ∈ prev portsl

v and
previ

v = prevl
v for j + 1 ≤ l ≤ i.

Proof of Claim 2 Since previ
v 6= zerov, then prev portsi

v 6= ∅ (by line 24).Proof of Claim 2-1

Let πj be the last operation before state qi in which a message m isProof of Claim 2-2

received over port p. Since port p is alive (lines 22 and 23) as argued in the
previous proof, such a πj exists.

Port p ∈ prev portsv in all the states from qj+1 to qi, because otherwiseProof of Claim 2-3

prev portsi
v does not include p (lines 17–21).

Since (by the code) whenever the value of prev changes, the group ofProof of Claim 2-4

prev ports changes too (line 18), neither prev v has changed in any state from
state qj+1 to qi. Thus previ

v = prevj+1
v . To complete the proof, we need to

show that prevj+1
v = msg(m). We consider two cases: either prevv changes in

πj, or it does not change. In the former, prevj+1
v = msg(m) by line 18; and

in the latter, selectedj+1
w = msg(m) by line 20.

Proof of Claim 2 2

Claim 3 If in operation πi, after state s1, node v is captured by another node
(i.e., v performs lines 11 and 12 and selectedv is changed to a value different
from zerov), then:

1. selectedi
v = zerov, and

2. the msg part of the last message that v sends to each of its outgoing
neighbors before operation πi is equal to next(zerov, p), where p is the
port-id through which the message is sent.

Proof of Claim 3 Since node v is captured at operation πi, then in state,Proof of Claim 3-1

qi, by lines 9 and 10,

select(previ
v, selected

i
v) = previ

v (1)

If previ
v = zerov, then selectedi

v = zerov (by Equation 1 and line 2), and
we are done. Otherwise, previ

v 6= zerov, and hence prev portsi
v 6= ∅ (by line

24). From Claim 2 there exists an operation πk, k < i in which a message
m is received over port p, p ∈ prev portsi

v. Let πj be the last such operation

27

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

before qi. From Claim 2, p ∈ prev portsl
v, and msg(m) = previ

v = prevl
v for

j + 1 ≤ l ≤ i.
To complete the proof of the first part of the claim, we prove that if theProof of Claim 3-2

value of selectedv has changed in πl, j + 1 ≤ l ≤ i, then in the last such
change selectedv was set to zerov; otherwise it was set to zerov in πj, and
thus selectedi

v = selectedj
v = zerov. To prove this, consider an operation πr,

j ≤ r < i such that πr is the last time before πi that the value of selectedv is
changed. Notice that such an operation exists.

Assume, to the contrary, that there is no such operation πr. Then, in πj,Proof of Claim 3-3

v receives a message m such that msg(m) = previ
v and select(previ

v, selectedi
v)

= select(previ
v, selectedj

v) = previ
v. Hence selectedv must have changed its

value in πj by lines 9–16, in contradiction to the fact that there is no change
in the value of selectedv in any operation j ≤ r < i.

By definition of πr, selectedr+1
v = selectedi

v. The value of selectedv changesProof of Claim 3-4

in πr to either prevr
v or zerov (either in line 11 or lines 6–14).

In the latter case, selectedr+1
v = selectedi

v = zerov, and the claim follows.Proof of Claim 3-5

We claim the former is impossible, i.e., selectedv may not change to prevv

in πr. Otherwise, prevr+1
v = selectedr+1

v , and since prevr+1
v = previ

v, then
previ

v = selectedi
v, in contradiction to Equation 1.

In πr, node v also sends a message with the msg part equal toProof of Claim 3-6

next(zerov, p) (lines 8 or 16). In all the operations r < k < i, selectedk
v =

zerov, and v can send a message only by performing a procedure time-
out (lines 28–30), such that the msg part equals next(selectedk

v , p) =
next(zerov, p); hence the second part of the claim holds.

Proof of Claim 3 2

Claim 4 Let πl be an operation after s1 but before state qi. If in πl

v sends to its outgoing neighbor w message ml, such that msg(ml) =
next(zerov, out portv(w)), and if either

1. message ml is the last message that arrives at w before qi, or

2. message ml has not yet arrived at w in state qi,

then in state qi there is no phony block bl i such that both v and w are ∈ bl i.

Proof of Claim 4Proof of Claim 4-1

Case 1: Let πj be the operation in which message ml is received by node w.

28

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

If in qi there is a block bli such that v, w ∈ bli, then parenti
w =Proof of Claim 4-2

in portw(v), and from Claim 1, selectedwi equals the msg part of ml, the
last message that was received from the parent port. Hence selectedi

v =
next(zerov, out portv(w)), a contradiction to the fact that bli is a phony block.

Case 2: Message ml has not yet been received by w. Assume the oppo-Proof of Claim 4-3

site, that v, w ∈ bli. Thus {v~mw} ⊆ bli, ml ∈ ~m. By the definition of a
block, selectedi

w = msg(ml) = next(zerov, out portv(w)), and again this is a
contradiction to the fact that the block is a phony block.

Proof of Claim 4 2

Proof of Lemma 3 Let us prove that subblock sbli must exist in state qi.Proof of Lemma 3-1

To prove this, assume such an sbli does not exist.
Then if the tail(bli+1) element exists in qi, then let e be the first elementProof of Lemma 3-2

(message or node) along the path induced by bli+1 that may not be a mem-
ber of sbli because either it has a different selected (when e is a node) or
an inconsistent parameter (when e is a message). There are four cases to
consider:

1. tail(bli+1) does not exist in qi,

2. e is a node,

3. e is a message, and

4. e does not exist.

A general remark: by the code, an operation πi is exactly one of the following:

1. sending one new message (by procedure time-out),

2. receiving one message,

3. receiving one message and sending one new message without changing
the node state, and

4. receiving one message, changing the state of node v, and sending one
new message from node v.

29

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

Case 1: Tail(bli+1) does not exist in qi. If tail(bli+1) is a node, then thisProof of Lemma 3-3

node has changed its selected in πi. If tail(bli+1) is a message, it must have
been generated in πi. Let us consider each of the two subcases (tail(bli+1) is
a node, or a message).

In the former subcase, let v be the node captured in πi. By Claim 3, if wProof of Lemma 3-4

is an outgoing neighbor of v, then the last message that v sent before state
qi was message m, such that msg(m) = next(zerov, out portv(w)).

By Claim 4, v and w may not be in the same phony block in state qi+1.Proof of Lemma 3-5

Since v is the tail of block bli+1, bli+1 contains only one node, v. In operation
πi, node v was captured after receiving a message m′, and sent a strong mes-
sage, m̂, with msg(m̂) = next(msg(m′), out portv(u)), where u is an outgoing
neighbor of v (by lines 11–13). Thus we are at case 5 of Lemma 3.

In the latter case, in operation πi, some node v generates messageProof of Lemma 3-6

m, which is the tail of bli+1. We claim that this case is impossible.
Message m is sent by v to outgoing neighbor w using the procedure
send neighbors. By performing this procedure, node v sent the message
next(selectedi+1

v , out portv(w)). Hence from the definition of a block and the
fact that m ∈ bli+1, v ∪ bli+1 is also a block, a contradiction to the fact that
bli+1 is a block (violating condition 6 of the block definition (Definition 5)).

Case 2: e is a node. Thus selectedi
e 6= selectedi+1

e , and node e was capturedProof of Lemma 3-7

in operation πi (lines 11 and 12). By Claim 3, selectedi
e = zeroe, and before

state qi, the last message e sent to its outgoing neighbor w was a message
such that msg(e) = next(zeroe, out porte(w)). From Claim 4, e and w cannot
be at the same phony block at state qi+1; therefore we are again at case 5 of
the lemma.

Case 3: e is a message. If e is a weak message, then the message wasProof of Lemma 3-8

generated in πi. A weak message can be generated only by time-out (lines
29–31). Thus we are at case 2 of the lemma.

If e is a strong message, then the message was created in πi by some nodeProof of Lemma 3-9

v. We claim that v ∈ sbli and v ∈ bli+1. If v ∈ bli+1 and v /∈ sbli, then e
is that node v and not the message, a contradiction. If v /∈ bli+1, then in
state qi+1 the message msg(e) = next(selectedi+1

v , l) where l is the port id of
the link on which e is sent (procedure send-neighbors). By the definition of
block, v ∪ bli+1 is a block, in contradiction to condition 6 of Definition 5.
Therefore, v ∈ sbli and v ∈ bli+1. Thus selectedi

v = selectedi+1
v . A strong

message may be sent without changing the status of a node by performing:

1. line 29 (time-out), but then parentv = nil and selectedi+1
v = zerov (from

30

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

line 1), and this is a contradiction to the fact that the block is a phony
block; and

2. lines 3 and 4, which corresponds to case 3 of the lemma.

Case 4: e does not exist. In this case, we should check if there is anProof of Lemma 3-10

element induced by sbli that is not a member of bli+1. Let d be the first
element (message or node) along the path induced by sbli which is not a
member of bli+1. We consider two cases: (1) d is a node; and (2) d is a
message. If d does not exist, then we are in case 6 of the lemma, sbli = bli+1.

Subcase 1: d is a message. In operation πi, some node v received d. IfProof of Lemma 3-11

v ∈ sbli, then if d is a strong message we are at case 3 of the lemma (lines
3 and 4), and if d is a weak message, then we are at case 1 of the lemma (a
weak message can only change the selected of a node to zero). If v /∈ sbli,
then d is the head of sbli. If v ∈ bli+1, we are at the case that a new node is
captured, which is case 5 of the lemma. If v /∈ bli+1, then only this message
disappeared; thus we are at case 1 of the lemma if it is a weak message, or
case 4 if it is a strong message.

Subcase 2: d is a node. We show that in this case, d ∈ sbli, but d /∈ bli+1,Proof of Lemma 3-12

which is impossible; thus, this entire case is impossible. If d is the tail of sbli,
then without loss of generality, sbli is defined as the subblock of sbli \ {v}.
If the head of sbli is node x but x /∈ bli+1, then without loss of generality,
sbli is defined as the subblock of sbli \ x. Hence head(sbli) ∈ bli+1, and
tail(sbli) ∈ bli+1. Therefore without loss of generality, d is not the head or
the tail of sbli and there exists a node or a message r ∈ sbli which is the
following node or message along the block sbli, and also r ∈ bli+1. Similarly,
there exists a node or a message y ∈ sbli that is a previous node or message
along the block sbli, and also y ∈ bli+1. In operation πi, d changed its
selectedd or parentd so that d ∈ sbli but d /∈ bli+1, however, the state of r and
y did not change; thus it is easy to see that according to the definition of a
block it cannot be that both r and y are in the same block bli+1.

Proof of Lemma 3 2

Corollary 4 Let πi be an operation after state s1. Then potential(sbl i) ≥
potential(bl i+1).

In Lemma 4, we prove that after O(nB) time the potential of any phony6.2-7

block reduces to zero. More specifically, we show that all the strong messages

31

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

in a phony block disappear after (at most) that much time. To do that, we
pick an arbitrary message on a phony block, track its traversal of the block,
and argue that such a traversal cannot last more than O(nB) units of time.
For the purpose of the proof, a strong message that is relayed by a node from
its in-port to its out-port is considered the same message.

In the formal proof, we follow the distance between the tracked mes-6.2-7

sage and the head of the block (defined as the remainder in Definition 10).
However, this process and definition is problematic: in continuing from the
location of a specific message, a block may branch into several blocks, because
the overall structure is that of a tree. Thus, the specific block traversed by
the message is not well defined, and neither is the remainder of the message.
To overcome this difficulty, we break the proof into three steps. In the first
two steps of the proof, we run the algorithm forward and then observe the
block in a backward execution of the same run. This solves our problem, be-
cause when the algorithm is run backwards, every block has a unique source
subblock (based on Lemma 3). Then in the third step, we make the argu-
ments necessary for the proof on the sequence of steps and blocks defined in
the second step.

The three steps of the proof are thus:6.2-8

1. Run the algorithm forward nB + n + 3 time units, and assume to the
contrary that there exists a block with a nonzero potential, and hence
there is a strong message in it.

2. By a backward simulation of the run on this block and this message in
previous states, build the progression of the block and the traversal of
that message in different states.

3. Prove on the forward sequence of blocks that the remainder of the
message in that block, nB + n + 3 time units after the initial step, is
zero. This last step is based on three points:

(a) The remainder of the message in the initial state is at most n+1.

(b) At least nB +n+3 times, the remainder of the message decreases
by one, since at each time unit the message advances at least one
more hop in the block.

(c) The number of times the remainder of the message increases by
one is at most nB + 1, the initial potential of the block. The
correctness of the third statement is based on the following points:

32

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

• the remainder of the message increases if a new node is cap-
tured by the block;

• the block loses one strong message for every node that is cap-
tured by the block (except perhaps for the first node that is
captured to the block; see Claim 5);

• the number of strong messages in the block is at most nB +1;
and

• by Lemma 3, the number of strong messages in a block cannot
increase.

Lemma 4 In O(nB) time units after state s1, the potential of every phony
block is zero.

Before we prove the lemma, let us discuss some definitions.6.2-9

Definition 10 Let bl = {~m0v0 ~m1v1 . . . ~ml−1vl−1 ~mlvl ~ml+1} be a subblock.
Define for each message m ∈ ~mj, remainder(m, bl) = l + 1 − j.

Observation 4 In any state, for every message m and subblock bl , 0 ≤
remainder(m, bl) ≤ n + 1.

Let πi be an operation after s1. Let bl i+1 be a phony block in state qi+1.

Definition 11 The subsource of block bl i+1 is the subblock sbl i in state qi,
as defined in Lemma 3 for block bl i+1.

Definition 12 The origin of message mi+1 is the strong message mi in sbl i

where:

1. if in πi, v sends mi+1, then mi is the message that in response to its
reception v sent mi+1; and

2. otherwise, mi = mi+1.

Definition 13 The source block of block bl i+1 is block bl i, whose suffix is the
subsource of block sbl i.

Observation 5 Remainder(mi, sbl i) = remainder(mi, bl i).

The observation follows from the fact that the subsource block sbl i is a suffix
of the source block bl i.

33

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

Observation 6 Potential(bl i+1) ≤ potential(bl i).

The observation derives from the following facts:

• potential(sbl i) ≤ potential(bl i) since sbl i is the suffix of bl i; and

• potential(bl i+1) ≤ potential(sbl i) (by Corollary 4).

Corollary 5 Let mi be the origin of mi+1. Then there are three possible
values for remainder(mi+1, bl i+1) as a function of remainder(mi, bl i) − 1:

1. remainder(mi+1, bl i+1) = remainder(mi, bl i) − 1, if in πi message mi

was relayed by a node and sent on the next link on the block;

2. remainder(mi+1, bl i+1) = remainder(mi, bl i) + 1, if in πi block bl i, in
which message mi resides, captures a node;

3. remainder(mi+1, bl i+1) = remainder(mi, bl i), which happens in either
of the following two cases:

• The head of bl i is message mi, and in πi message mi captures
a new node and mi+1 is relayed by the captured node. In this
case, the remainder of the head message remains zero, and hence
remainder(mi+1, bl i+1) = remainder(mi, bl i) = 0. This case is
considered to be the simultaneous occurrence of the first two pos-
sibilities.

• remainder(mi+1, bl i+1) = remainder(mi, bl i) if neither of the first
two cases occurs. Then in πi no new node is captured by bl i, and
πi does not affect mi.

Corollary 5 is based on Lemma 3 and Observation 5.

Definition 14 The progression of blw from state qk to state qw, k ≤ w,
is the series of blocks blkblk+1 . . . blw at states qkqk+1 . . . qw, such that for
k ≤ i ≤ w, bl i is the source block of bl i+1.

Remark 2 Note that the progression of a block is defined backwards; i.e., blw

is the first step, and the source relationship between bl i and bl i+1 continues
the definition from i + 1 to i.

34

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

Definition 15 The strong message mw traversal of block blw from state qk

to state qw, k ≤ w, is the series of strong messages mk, mk+1 . . . mw at states
qk, qk+1 . . . qw, such that for k ≤ i ≤ w, mi is the origin of mi+1, mi ∈ bl i,
and mi+1 ∈ bl i+1, and bl i is the source block of bl i+1.

Remark 3 Note that as in the definition of block progression, the message-
traversal definition is also inductively backwards; i.e., the basis of the induc-
tion is message mw and block blw, and the step of the induction is the origin
relationship between mi and mi+1.

Before we start the formal proof of Lemma 4, we will state and prove a6.2-10

basic claim that corresponds to the second bulleted point (at the end of the
intuition paragraph before Lemma 4). Let blw be a block in state qw, and
let bl0, bl1, . . . , blw be the progression of the block from state q0 to qw. Let
{πi1 , πi2 , . . . , πik} be a maximal series of operations such that for every j, a
new node is captured by blij−1 in πij .

Claim 5 For every j, 0 ≤ j ≤ k − 1, there exists an operation πl, ij < l <
ij+1 such that potential(bll+1) ≤ potential(bl l) − 1.

Proof of Claim 5 Let v be the node that is captured by subsource blockProof of Claim 5-1

blij in operation πij . Let u be the node captured by source block blij+1 in
operation πij+1 . Node u is the outgoing neighbor of v. This follows from the
fact that the series of {πi1πi2 . . . πik} is maximal, and from the definition of
the progression bl0, bl1 . . . blw.

The last message that v sends to u before operation πij is m1, suchProof of Claim 5-2

that msg(m1) = next(zerov, out portv(u)) (by Claim 3). In operation
πij , node v sends to u a strong message, m2, such that msg(m2) =
next(selectedv, out portv(u)) where m2 ∈ blij+1 (case 5 of Lemma 3). Hence
msg(m2) 6= msg(m1) (since blij is a phony block).

Let πl be the operation in which u receives message m2. To completeProof of Claim 5-3

the proof we show that (1) ij < l < ij+1, and (2) potential(bll+1) ≤
potential(bll) − 1.

1. By the definition of πl, clearly ij < l. Since u /∈ bll, it is clear that
l < j+1. Assume to the contrary that u ∈ bli, then by Claim 1 selectedu

equals the body of the last message received from v. Since m1 is the
last message u received from v, selectedv = next(zerov, out portv(u)).
This contradicts the fact that bll is a phony block.

35

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

2. Assume, to the contrary, that potential(bll+1) > potential(bll) − 1.
Hence in πl after receiving m2, u sends another strong message that
belongs to bll+1 and u performs lines 3 and 4 or 10–12. Let us consider
the two cases:

(a) If line 4 is performed, then in portu(v) = parentlu, and msg(m2) =
selectedl

u (line 3); but by Claim 1, selectedl
u = msg(m1), and this

is a contradiction since msg(m1) 6= msg(m2).

(b) In case lines 8 and 9 are performed, then in portu(v) ∈ prev portsl

and prevl
u = msg(m2) (line 10), but by Claim 2, prevl

u = msg(m1),
and this is a contradiction because msg(m1) 6= msg(m2). Hence
potential(bll+1) ≤ potential(bll) − 1.

Proof of Claim 5 2

Proof of Lemma 4 Let qs be a state after s1, and let qw be a state that isProof of Lemma 4-1

nB + n + 3 time units after qs. We prove that at state qw the potential of
every phony block reaches zero. Assume to the contrary that in state qw the
potential of a particular block blw is not zero. Hence, there exists a strong
message which we denote as mw, where mw ∈ blw. Let blsbls+1 . . . blw be the
progression of the block from state qs to qw, and let msms+1 . . . mw be the
traversal of the message in the different states qsqs+1 . . . qw.

Let us look at the group of operations {πi}s≤i≤w−1. The following twoProof of Lemma 4-2

observations about the remainder of mi and the potential of bli are true:

1. At least nB+n+3 times, there is an operation πi such that a node in bli

receives mi and sends mi+1 (cases 1 and 3 of Corollary 5). Hence at least
nB + n + 3 times, remainder(mi+1, bli+1) = remainder(mi, sbi) − 1.

2. At most nB + 1 times, an operation πi exists such that a node is
captured by block bli (cases 2 and 3 of Corollary 5).

This follows from three main points:

(a) by Observation 6, potential(bli+1) ≤ potential(bli) byClaim5, betweeneverytwoconsecut
such that potential(bll+1) ≤ potential(bll) − 1; and

(b)(c) by Corollary 3, potential(bls) ≤ nB.

36

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

By Observation 4, remainder(ms, bls) ≤ n + 1. remainder(mw, blw) =
remainder(ms, bls) + Σw−1

s (remainder(mi+1, bli+1) − remainder(mi, bli)) ≤
n+1+(−1)∗(nB+n+3)+(+1)∗(nB+1) = −1 < 0. This is a contradiction,
since by Observation 4 remainder(mw, blw) ≥ 0.

Proof of Lemma 4 2

Let s2 be the state where the potential of every phony block equals zero.6.2-11

Let qm be a state, after state s2, and let qp be a state that is two time units
after qm. Let blmblm+1 . . . blp = bl be the progression of a phony block bl
from state qm to state qp.

Lemma 5 If the number of nodes in blp is k, then the number of nodes in
blm at state qm is at least k + 1.

Proof of Lemma 5 Let v be the tail node in blm at state qm. Clearly,Proof of Lemma 5-1

parentv 6= nil, since otherwise selectedv = zerov (by line 1), which is a contra-
diction to the fact that v belongs to a phony block. Let parentv = in portv(u),
where u is an outgoing neighbor of v.

To prove the lemma, we show that at a maximum of two time units afterProof of Lemma 5-2

qm there exists an operation such that selectedv changes. This is sufficient,
since no new nodes can be captured by any phony block after state s2.

Let p be the previous element to the tail of block blm at qm. By propertyProof of Lemma 5-3

6 of the block definition, p ∪ blm is not a block.
There are two cases to consider: (1) p is a message m that is transferedProof of Lemma 5-4

from u to v, or (2) p is node u.
In case p is a message, then after a maximum of one time unit the firstProof of Lemma 5-5

node in the block receives m from its parent such that msg(m) 6= selectedv

(since m cannot be added to the block) and selectedv changes to zerov by
lines 6 and 7.

In case p is a node, then after at most one time unit from qm, u sendsProof of Lemma 5-6

a message m by time-out. Message m cannot be added to the phony block,
and after one time unit node u still cannot be added to the block (no new
phony nodes can be captured after s2). Hence, we are again in case 1.

Proof of Lemma 5 2

Lemma 6 In O(n) time units after s2, there are no phony blocks.

37

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

Proof of Lemma 6 Within O(n) time units after s2, the block containsProof of Lemma 6-1

only a weak message sequence (no nodes at all). This follows from the fol-
lowing facts:

• by Lemma 5, in each O(1) time units after state qm, the number of
nodes in a block is reduced by at least one;

• there are at most n nodes in a phony block to start with; and

• no new nodes can be added to a phony block after state s2 (since the
potential of a phony block equals zero).

Within O(1) time units after that state, the weak-message sequence alsoProof of Lemma 6-2

disappears. This follows from the following statements: (1) weak messages
can be sent only in a time-out; and (2) there is no node in the phony block
to send them.

Proof of Lemma 6 2

Let s3 be the global state in which there are no phony blocks.

Definition 16 Selectedi
v, the selected value of node v at state qi, is a deriva-

tive of zerou if there is a u-to-v path, {v1v2 . . . vk}, where u = v1 and
v = vk, and an assignment to the variables of all the nodes along the
path that defines a block on the path subject to selectedu = zerou and
selectedi

vj+1
= next(selectedi

vj
, out portvj

(vj+1)), where 0 ≤ j ≤ k − 1. The
path is called the derivation path from u to v.

Observation 7 The selected value of any node in a state after s3 is a deriva-
tive of some zero value of a node in the network.

The observation follows, since there are no phony blocks in the network.

Definition 17 (Stabilization Properties)
Each framework that is suitable for our generic algorithm defines a set of
legal global and final states such that the following properties hold:

1. Each node has a stable and legal selected value. Node v has a
legal selected value at the state after s3, if its derivation path,
{v0, v1, . . . , vk, v}, denoted by the legal derivation path of v, satisfies
the following properties:

38

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

(a) There is a unique node denoted r, the root of the tree, such that
v = r and r’s legal selected value is zeror. Otherwise, if v 6= r,
selectedv, the legal value of node v, is a derivative of zeror, i.e.,
v0 = r.

(b) For every 0 ≤ i ≤ k, {v0, v1, . . . , vi} is a legal derivation path for
a legal selectedvi

value.

(c) A legal selected value of node v is selected as selectedv over any
other suggestion for a nonlegal selected value which is a derivative
of some zero value of a node in the network.

2. Each node has a stable parent. The parent of r is nil, and the parent
of every other node is a pointer to one of its incoming neighbors. The
graph induced by the parent relationship is a tree.

Definition 18 A block is a legal derivation block of v laid over the derivation
path dp, if the block is on the path dp and the assignment of the selected values
of all the nodes along dp is legal.

Remark 4 A node can have more than one legal selected value; hence there
can be more than one legal derivation path and legal derivation block.

Observation 8 If v has a legal selected value after s3, then any block that
contains v must be a block or a subblock of a legal derivation block.

The observation follows from property (b).6.2-12

Observation 9 Let bl be a block or a subblock of a legal derivation block.
Then the source of bl is a block or subblock of a legal derivation block.

Lemma 7 In any state qi which is O(n) or more time units after s3, if
selectedv is legal, then there exists a legal derivation block based on the deriva-
tion path from r to v.

Before proving the lemma, let us define:6.2-13

Definition 19 A block without power supply is a block whose tail’s selected
value is not a zero value.

Observation 10 A legal derivation block is a block with power supply.
39

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

The proof of the lemma is based on the following two claims:6.2-13

Claim 6 Let bl be a block without power supply at a state after s3, then after
O(n) time units the block disappears.

Proof of Claim 6 The proof of the claim is similar to the proof of Lemma
6, and will not be repeated here. The intuition is that a phony block is also
a block without power supply. The same properties hold for a phony block
that disappears and a block without power supply.

Proof of Claim 6 2

Consider a state qi after s3 in which selectedu is a legal value, and a legal
derivation block is laid over ldp, the legal derivation path from r to u. Then
the following claim applies.

Claim 7 At any state after qi, u has a legal derivation block which is laid
over ldp.

Proof of Claim 7 Assume, to the contrary, that there is an operation πwProof of Claim 7-1

such that at state qw, after qi, there is a legal derivation block laid over ldp,
and in state qw+1 after this operation there is no legal derivation block on
ldp.

Hence, some node from ldp changes its state in operation πw. Let v be thatProof of Claim 7-2

node. By property (b) of a legal derivation path, v has a legal selected value.
By property (c), it cannot be that v changes its state in πw: contradiction.

Proof of Claim 7 2

Proof of Lemma 7 Assume, to the contrary, that there exists a node vProof of Lemma 7-1

in state qi, O(n) after s3 such that selectedv is legal, but there is no legal
derivation block. Let bl′ be a block that contains v. Block bl′ must be a
subblock of a legal derivation block at state qi (by Observation 8); hence by
Observation 10, bl′ is a block without power supply.

By Claim 6, the source of bl′ at state qm before s3 is a block with powerProof of Lemma 7-2

supply. Therefore, there is an operation after s3, denoted by πp, because
of which the block is without power supply. But this is impossible, since at
state qp the source of bl′ is a legal derivation block (by Observation 9) and by
Claim 7, the source of bl′ at state qp+1 is also a legal derivation block; hence a
block with power supply (by Observation 10). This is a contradiction; hence
the lemma.

Proof of Lemma 7 2

40

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §6.2

Lemma 8 In O(n) time units after sh, the network enters state s4 and a
legal final state L such that in any state after s4 the network is in state L.
In the legal final state L, a rooted tree (as required) spans the network.

Proof of Lemma 8 The proof is based on an inductive assumption that atProof of Lemma 8-1

state qk (which is at least 2k time units after sh), every node that has at least
one legal derivation path that contains k nodes in its selected value is legal.

Base: For k = 1, we should prove that the inductive assumption holdsProof of Lemma 8-2

for r. By property (a) of legal derivation path, zeror is selected as a legal
value of selectedr from all the derivative selected values for node r. Hence by
line 2 and by Observation 7 the result holds.

Step: Assuming the inductive assumption holds for k, then we prove itProof of Lemma 8-3

for k + 1. Let v be a node that has a legal derivation path with k + 1 nodes.
By property (b) of a legal derivation block, node v has a neighbor w with
a legal derivation path with k nodes, and hence the inductive assumption
holds for node w. Therefore, by Lemma 7, a legal derivation block exists for
node w at state qk which is at least 2k time units after sh. Node w receives
a strong message in every time unit from its parent in the legal derivation
block. This follows from the fact that the tail of a legal derivation block is r
and selectedr = zeror (by property a of a legal derivation block), and r sends
a strong message on all of its outgoing links every time unit (by procedure
time-out line 30). Hence at qk+1, the state that is at least 2(k + 1) time
units after sh, v receives two strong messages from w. The body part of
these messages is a suggestion for a legal selected. If those suggestions are
selected as selectedv, then upon receiving the first message, prev is updated
(lines 14–21), and upon receiving the second message, selected is updated
(lines 11–13). Therefore, at qk+1, selectedv has a legal value. Otherwise, this
suggestion for selectedv is not selected as selectedv. By property c of a legal
derivation block, the latter can happen only if selectedv already has a legal
selected value. Hence the lemma holds.

Proof of Lemma 8 2

This completes the proof of the main theorem.6.2-14

Lemma 9 The time complexity of the BFS is O(D).

Proof of Lemma 9 The same inductive assumption as in Lemma 8 holds,
with some changes when the starting point is a state after s1 and not after
s3.

Proof of Lemma 9 2

41

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §Appendix:

Remark 5 The proof ignored a remark that was made about the model in
Sections 2 and 4, thus assuming that the rate at which messages are processed
is faster than the rate at which links transmit them. It is easy to modify the
proof to hold with the remark. In effect, the remark is equivalent to losing
some messages on the links which may only decrease the potential of phony
blocks, and does not disturb the power-supply principle. Notice that in the
remark we introduce two buffers at each port, thus preventing the possibility
of a few blocks uniting into one block, i.e., not affecting the correctness of
Lemma 3.

6.3 Conclusions

A simple method for designing self-stabilizing algorithms for unidirectional6.3-1

and bi-directional networks has been presented in this paper. The key advan-
tages of our methodology are its simplicity, it works in arbitrary synchronous
and asynchronous unidirectional networks, and it does not require any a pri-
ori knowledge about the network topology or size. The algorithms presented
here stabilize in O(n) time units, and any fake message disappears in time
that is proportional to the number of the fake messages in the greatest phony
block. To demonstrate the capabilities of our methodology, we present algo-
rithms for constructing DFS and BFS trees. These trees are up-trees, that
is, there exists a path in the tree from the root to any node.

An open question is to design an algorithm under similar assumptions and6.3-2

complexities but for the construction of a down-tree, that is, a tree in which
there is a unidirectional path from any node to the root. The combination of
up-tree and down-tree algorithms would facilitate the automatic translation
of any bidirectional distributed algorithm into a unidirectional self-stabilizing
version of the algorithm.

Appendix: The Lower Bound of the Syn-
chronous Algorithm

In Figure 6, a simple scenario in which our algorithm has Ω(n) time complex-A-1

ity is presented. In the figure, beside each node we have placed the record
[leader, distance from the leader], plus the node id in bold-face type. Let us
look at the block of size n − 1 with a fake id of 1. To simplify, we describe
the scenario under the synchronous model. In every round, only one node

42

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §Appendix:

from the block with fake id 1 disappears; this is the node with the smallest
distance in the block.

For example, in the first round, the node with an id of 80 changes itsA-2

state, since it receives only one message [10, 0] from node 10, and according
to this message its leader should be 10 and not 1. Assuming this is the
first time node 80 receives the change, the node changes its state to [80, 0];
otherwise, it changes to [10, 1]. All other nodes in the block with fake id 1
do not change their state, because they get a message that reassures their
state from their incoming neigbor in the block of fake id 1. Similarly, in the
next round, node 70 changes its state, since it receives the messages [80, 0]
or [10, 1] from node 80 and [10, 0] from node 10, which do not support its
current leader, 1. All other nodes in the block with a fake id of 1 do not
change their states because they get messages that reassure their states from
their incoming neigbors in the block with fake id of 1. Hence, after only n−1
rounds, the block with a fake id of 1 disappears, even though the diameter
of the network is 2.

43

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms §Appendix:

wblock of

fake-id 1 10

80

70

60

50

40

30

20

90

[1,1]

[1,2]

[1,5]

[1,6]

[1,3]

[1,4]

[1,7]

[1,8]

[10,0]

Figure 6: An example

44

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms (Ref)

Acknowledgment of support: We would like to thank Shlomi Dolev
for several helpful discussions. This work was supported by the Broadband
Telecommunications R&D Consortium, administered by the chief scientist of
the Israeli Ministry of Industry and Trade.

References

[AAG87] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network
protocols to dynamic networks. In Proceedings of the 28th IEEE
Annual Symposium on Foundation of Computer Science, pages
358–370, Los Alamitos, CA, October 1987. IEEE.

[AB93] Y. Afek and G. M. Brown. Self-stabilization over unreliable
communication media. Distributed Computing Journal, 7:27–34,
1993. Also abstracted in Proceedings of the 8th IEEE Symposium
on Reliable Distributed Systems, Los Alamitos, CA, pages 10–12
1989. IEEE.

[AEYH92] E. Anagnostou, R. El-Yaniv, and V. Hadzilacos. Memory adap-
tive self-stabilizing protocols. In Proceedings of the 6th Interna-
tional Workshop on Distributed Algorithms, volume 647 of Lec-
ture Notes in Computer Science, pages 203–220, Berlin, Novem-
ber 1992. Springer-Verlag.

[AG94a] Y. Afek and E. Gafni. Distributed algorithms for unidirectional
networks. Siam Journal on Computing, 23(6):1152–1178, De-
cember 1994.

[AG94b] A. Arora and M. Gouda. Distributed reset. IEEE Transactions
on Computers, 43:1026–1038, 1994.

[AKM+93] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self stabilizing synchronization. In
Proceedings of the 25th ACM Symposium on Theory of Comput-
ing, pages 652–661, New York, May 1993. ACM.

[AKY90] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self sta-
bilizing protocols for general networks. In Proceedings of the
4th International Workshop on Distributed Algorithms, volume

45

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms (Ref)

484 of Lecture Notes in Computer Science, pages 15–28, Berlin,
September 1990. Springer-Verlag.

[ALss] Y. Afek and T. Lev. Distributed synchronization protocols for
SDH networks. Submitted for publication, November 1995, In
Press.

[APSV91] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-
stabilization by local checking and correction. In Proceedings
of the 32nd IEEE Annual Symposium on Foundations of Com-
puter Science, pages 268–277, Los Alamitos, CA, October 1991.
IEEE.

[APSVD94] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-
stabilizing by local checking and global reset. In International
Workshop on Distributed Algorithms, pages 326–339, Berlin,
1994. Springer-Verlag.

[AV91] B. Awerbuch and G. Varghese. Distributed program checking:
A paradigm for building self-stabilizing distributed protocols. In
Proceedings of the 32nd IEEE Annual Symposium on Founda-
tion of Computer Science, pages 258–267, Los Alamitos, CA,
October 1991. IEEE.

[BGM90] J. E. Burns, M. G. Gouda, and R. E. Miller. Stabilization and
pseudo stabilization. Technical Report TR-90-13, The Univer-
sity of Texas at Austin, May 1990.

[BGW89] G. M. Brown, M. G. Gouda, and C.-L. Wu. Token systems that
self-stabilize. IEEE Transactions on Computers, c38(6):845–
852, 1989.

[BP89] J. Burns and J. Pachl. Uniform self-stabilizing rings.
ACM Transactions on Programming Languages and Systems,
11(2):330–344, 1989.

[CD94] Z. Collin and S. Dolev. Self-stabilizing depth first search. Infor-
mation Processing Letters, 49:297–301, 1994.

46

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms (Ref)

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17:643–644, November
1974.

[DIM91] S. Dolev, A. Israeli, and S. Moran. Resource bounds for self
stabilizing message driven protocols. In Proceedings of the 10th
ACM Symposium on Principles of Distributed Computing, pages
281–294, New York, August 1991. ACM.

[DIM94] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic
systems assuming only read/write atomicity. Distributed Com-
puting Journal, 7, 1994. Also in Proceedings of the 9th ACM
Symposium on Principles of Distributed Computing, New York,
August 1990. ACM.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirec-
tional algorithm for extrema finding in a circle. Journal of Al-
gorithm, 3:245–260, 1982.

[ELW90] S. Even, A. Litman, and P. Winkler. Computing with snakes in
directed networks of automata. In Proceedings of the 31st IEEE
Annual Symposium on Foundations of Computer Science, pages
740–745, Los Alamitos, CA, October 1990. IEEE.

[GA84] E. Gafni and Y. Afek. Election and traversal in unidirectional
networks. In Proceedings of the 3rd Annual ACM Symposium on
Principles of Distributed Computing, pages 190–198, New York,
August 1984. ACM.

[GK84] E. Gafni and W. Korfhage. Distributed election in unidirectional
Eulerian networks. In Proceedings of the 22nd Annual Allerton
Conference on Communication, Control, and Computing, Octo-
ber 1984.

[GKA83] M. Gerla, L. Kleinrock, and Y. Afek. A distributed routing al-
gorithm for unidirectional networks. In Proceedings of the IEEE
Global Telecommunications Conference, GLOBCOM ’83, pages
19.3.1–19.3.5, Los Alamitos, CA, 1983. IEEE.

[Her90] T. Herman. Probabilistic self-stabilization. Information Pro-
cessing Letters, 35:63–67, 1990.

47

Chicago Journal of Theoretical Computer Science 1998-3

Afek and Bremler Self-Stabilizing Algorithms (Ref)

[IJ93] A. Israeli and M. Jalfon. Uniform self-stabilizing ring orienta-
tion. Information and Computation, 104:175–196, 1993.

[KP90] S. Katz and K. J. Perry. Self-stabilizing extensions for message-
passing systems. In M. Evangelist and S. Katz, editors, Pro-
ceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing, pages 91–101, New York, August 1990.
ACM.

[Kut88] S. Kutten. Stepwise construction of an efficient distributed
traversing algorithm for general strongly connected directed net-
works. In J. Raviv, editor, Proceedings of the 9th International
Conference on Computer Communication, pages 446–452, Am-
sterdam, October 1988. Elsevier.

[MOOY92] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-stabilizing
symmetry breaking in constant space. In Proceedings of the 24th
ACM Symposium on Theory of Computing, pages 667–678, New
York, May 1992. ACM.

[MOY96] A. Mayer, R. Ostrovsky, and M. Yung. Self-stabilizing algo-
rithms for synchronous uni-directional rings. In Proceedings of
the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 564–573, New York, January 1996. ACM.

[Mul88] N. Multari. Self-stabilizing protocols. PhD Thesis, Department
of Computer Sciences, University of Texas, 1988.

[OW95] Rafail Ostrovsky and Daniel Wilkerson. Faster computation on
directed networks of automata. In Proceedings of the 14th An-
nual ACM Symposium on Principles of Distributed Computing,
pages 38–46, New York, August 1995. ACM.

[Pet82] G. L. Peterson. An O(nlogn) unidirectional algorithm for the
circular extrema problem. ACM Transactions on Programming
and Language Systems, 4(4):758–762, October 1982.

[Taj77] W. P. Tajibnapis. A correctness proof of a topology informa-
tion maintenance protocol for a distributed computer network.
Communications of the ACM, 20-7:477–485, 1977.

48

Chicago Journal of Theoretical Computer Science 1998-3

