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The Complexity of Generating Test Instances∗

Christoph Karg Johannes Köbler Rainer Schuler

25 March, 1999

Abstract

Recently, Watanabe proposed a framework for testing the correct-Abstract-1

ness and average-case performance of algorithms that purport to solve
a given NP search problem efficiently on average with respect to some
distribution on the instances. The idea is to randomly generate certi-
fied instances under some distribution that resembles the input distri-
bution. Watanabe showed that unless RE = NE, test instances cannot
be generated for some NP search problems. We further discuss Watan-
abe’s approach and show, as an upper bound, that test instances can
be generated for every NP search problem with non-adaptive queries
to an NP oracle.

We also introduce Las Vegas and Monte Carlo types of test instanceAbstract-2

generators and show that these generators can be used to find out
(with high confidence) whether an algorithm is correct and efficient
on average. It is shown that Monte Carlo generators can be easily
constructed for all RP search problems and that Las Vegas generators
exist for all ZPP search problems as well as for other problems such as
prime factorization. On the other hand, we prove that Monte Carlo
generators can only exist for problems in NP ∩ co-AM.

1 Introduction

The class NP is one of the most intensively studied classes in computational1-1

complexity theory, for it contains a large variety of problems that are of
∗An extended abstract of the paper was presented at the Fourteenth Symposium on

Theoretical Aspects of Computer Science (STACS), Springer-Verlag, Lecture Notes in
Computer Science 1200, pp. 375–386, 1997.
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practical importance. There are two types of problems that we are inter-
ested in, namely decision problems and search problems. Solving a decision
problem means to decide whether a given instance has a solution, and solving
a search problem means to actually find a solution. Although, at first glance,
search problems seem more difficult to solve than decision problems, in many
cases, they are equivalent under polynomial-time Turing reductions. For ex-
ample, since any NP search problem is polynomial-time Turing reducible to
any NP-complete (decision) problem, it follows that NP-complete problems
have self-computable witnesses (in the sense of [BD76, Bal89]), meaning that
solutions can be efficiently computed by asking oracle queries to the corre-
sponding decision problem.

Since polynomial-time algorithms do not exist for NP-complete problems1-2

unless P = NP, it seems reasonable to look for algorithms that are efficient
in the average case [Lev86] (see [Gur91] or [Wan97] for a survey). In prac-
tical applications, instances occur with certain probabilities. To model this
process, we use probabilistic Turing machines that output instances in time
polynomial in the length of the generated instances [BCGL92].

Besides designing efficient algorithms it is also important to find ways1-3

of testing the correctness (and performance) of a given algorithm. Ideally,
one would like to give a proof that the algorithm is correct and efficient.
However, in some cases, a mathematical proof may be hard to obtain, or the
proof may be long and complex. Thus, in practical terms, it is reasonable to
test algorithms by feeding them with carefully chosen instances for which the
solutions are already known. An obvious approach is to use a probabilistic
polynomial-time bounded algorithm that generates instances of the problem
together with some solution. To be useful, these test instances should be
generated according to some distribution that resembles the frequencies with
which the instances occur in practice.

In this paper our objective is to verify the “global correctness” of a given1-4

algorithm A in the sense that, on a randomly selected input (according to
the underlying distribution on the instances), the output of A is correct with
high probability. This should be seen in contrast to the program checking
approach in [BK95], where the outcome of the algorithm on a single instance
has to be verified. Watanabe [Wat94] introduced a framework for globally
checking the correctness and average-case behavior of algorithms. Intuitively,
a generator for an NP search problem only needs to solve the problem on
instances that are (randomly) generated by the generator itself, whereas an
algorithm has to solve the problem on instances that are (randomly) gener-
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ated “from outside.” Thus, for some NP search problems it might be easier
to find a generator than to find an algorithm that solves it. For example,
it is not hard to construct a test instance generator for prime factorization
under the standard distribution (which is uniform on each input length). On
the other hand, no efficient on-average algorithm is known that on input of a
binary number n, either outputs a factor of n in case n is composite, or out-
puts “prime” otherwise. In fact, this is the basis for the practical security of,
for example, the RSA cryptosystem. Also, for certain random self-reducible
problems [TW87, AFK89] it is possible to generate instances (along with
some solution) according to the distribution induced by the self-reduction.
Examples are the quadratic residue and the discrete logarithm problems.

A test instance generator, as introduced by Watanabe, is a probabilistic1-5

algorithm G that generates instances along with a solution; in particular,
G only produces positive instances . Moreover, on input 0n, G is required
to output each positive instance of length n with sufficiently large proba-
bility (compared with the conditional distribution on the set of all positive
instances of length n). As shown by Watanabe, there exist NP search prob-
lems for which test instances cannot be generated unless RE = NE. In fact,
since for certain distributions the generator has to amplify the probability
of the positive instances by an exponential factor, we can show that this is
even true for very simple search problems.

In our model, a generator may produce positive as well as negative in-1-6

stances. As in Watanabe’s approach, we require that the generator G output
a witness along with every positively classified instance, i.e., G never mis-
classifies a negative instance. Moreover, each instance x has to be generated
with a probability that is polynomially related to the probability µ(x) with
which x occurs in practice. Thus, G is not required to amplify the proba-
bility of the positive instances. Furthermore, this condition implies that any
algorithm is efficient on the generated instances if and only if it is efficient
under the given distribution µ.

We define two types of test instance generators in this paper, namely,1-7

a Monte Carlo generator and a Las Vegas generator. While a Monte Carlo
generator is allowed to misclassify a (positive) instance with small probabil-
ity, a Las Vegas generator has to classify all generated instances correctly.
We show how these generators can be used to decide efficiently (and with
high confidence) whether a given algorithm A for an NP search problem is
correct with respect to µ. Further, we describe how to construct Monte Carlo
generators for all RP search problems as well as Las Vegas generators for all

3
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ZPP search problems.
In general, whereas logarithmically many adaptive queries are useless,1-8

a polynomial number of non-adaptive queries to an NP set turn out to be
sufficient to generate test instances for any NP search problem. This implies,
in particular, that under the assumption NP = RP, any distributional NP
search problem has a test instance generator.

Further, by an application of the universal hashing technique, we show1-9

that the domain of any search problem for which a Monte Carlo generator
exists (under the standard probability distribution) necessarily belongs to
co-AM. Similarly, Las Vegas generators can only exist for NP search problems
whose domain belongs to NP ∩ co-NP. As a consequence, Monte Carlo or
Las Vegas generators do not exist for search problems with an NP-complete
domain, unless the polynomial-time hierarchy collapses.

Finally, we define a reducibility between NP search problems that, similar1-10

to the reducibility introduced by Levin [Lev86, BG93], preserves the proba-
bilities of the instances. Via this reducibility we can obtain a test instance
generator for a given NP search problem provided that we already have a
test instance generator for some NP search problem to which the given one
reduces.

2 Preliminaries

In this paper we use the standard notations and definitions of computa-2-1

tional complexity theory (see, for example, [BDG95]). An introduction
to the theory of computational average-case complexity can be found in
[Gur91, BCGL92, Wan97]. Given below are some of the basic definitions
we will use.

All languages considered here are over the alphabet Σ = {0, 1}. The2-2

length of a string x ∈ Σ∗ is denoted by |x|. For a set A of strings, let
A=n = A ∩ Σn and A≤n =

⋃n
k=0A

=k. We denote the cardinality of a finite
set A by ‖A‖, and we write A(x) = 1, if x ∈ A, and A(x) = 0 otherwise. The
pairing function 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ is defined as 〈x, y〉 = d(x)01y, where
d(x1 . . . xn) = x1x1 . . . xnxn. Note that 〈x, y〉 is computable and invertible in
polynomial time, and for all x, y ∈ Σ∗, |〈x, y〉| = 2|x| + |y| + 2.

Probability functions and distributions. Let µ be a probability2-3

distribution on Σ∗. Associated with µ are a probability function that we also
denote by µ and a distribution function, denoted by µ∗. More formally, µ and

4
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µ∗ are functions from Σ∗ into the interval [0, 1] such that
∑

x µ(x) = 1 and
µ∗(x) =

∑
y≤x µ(y), where, as usual, ≤ denotes the lexicographic ordering on

Σ∗. For any set X ⊆ Σ∗ let µ(X) =
∑

x∈X µ(x). We refer to the distribution
with the probability function µst(x) = 1/(|x|(|x| + 1)2|x|) as the standard
distribution.

Let µ, ν : Σ∗ → [0, 1] be functions. We say that µ is polynomially domi-2-4

nated by ν (in symbols: µ � ν) [Lev86] if, for some polynomial p and all x,
µ(x) ≤ p(|x|) · ν(x). In case µ � ν and ν � µ, the distributions µ and ν
are called equivalent (in symbols: µ ≡ ν) [WB95]. A function f from Σ∗ to
the non-negative integers is polynomial on µ-average [Lev86] if there exists a
constant ε > 0 such that ∑

x 6=λ

f ε(x)
|x| · µ(x) < ∞.

The set of functions that are polynomial on µ-average is closed under addition
and multiplication. Furthermore, if µ is dominated by ν, then every function
that is polynomial on ν-average is polynomial on µ-average [Lev86, Gur91].

A distribution is called p-computable if its distribution function µ∗ is2-5

polynomial-time computable in the sense of Ko and Friedman [KF82], i.e.,
there exists a polynomial time bounded deterministic Turing transducer M
such that, for all x and all k, it holds that |M(x, 1k) − µ∗(x)| ≤ 2−k. A dis-
tribution is called samplable [BCGL92] if there exists a probabilistic Turing
machine M that on input λ outputs x with probability µ(x). If, in addi-
tion, M is polynomial-time bounded in the length of the output, then µ is
called p-samplable. It is easy to see that the standard distribution µst is
p-computable. Furthermore, every p-computable distribution is dominated
by some p-samplable distribution [BCGL92, Theorem 7].

Distributional NP search problems. An NP search problem is spec-2-6

ified by a binary polynomial-time decidable witness relation R and a polyno-
mial qR such that R(x,w) implies |w| = qR(|x|). Any w for which R(x,w)
holds is called a solution (witness) for x. An instance x is called a positive in-
stance in case it has a solution, and a negative instance, otherwise. We assume
without loss of generality that λ is never a solution. A witness relation R also
specifies an NP decision problem, namely DR = {x ∈ Σ∗ | ∃w : R(x,w)}. DR

is also called the domain of R. In case DR = Σ∗, R is called a total NP search
problem.

A distributional NP search problem is a pair (R, µ) consisting of a witness2-7

relation R and a p-samplable probability function µ. A (deterministic) al-
5
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gorithm A efficiently solves (R, µ) if the running time of A is polynomial on
µ-average and A computes a solution for all inputs x in the domain of R,
whereas it outputs λ on all other inputs.

3 Generating Positive Test Instances

As pointed out in the introduction, the aim of test instance generation is to3-1

verify the quality (correctness and performance) of a given algorithm. In this
section we will discuss Watanabe’s approach to the test instance generation
problem. Specifically, Watanabe requires the following properties of a test
instance generator G for a distributional NP search problem (R, µ): G is a
probabilistic polynomial-time algorithm, which, on input of 0n, either outputs
⊥ (“not successful”) or generates some instance x of length n together with
a solution w for x. Moreover, G has to output each positive instance with
non-negligible probability compared with the conditional probability function
ρn on the positive instances of length n. In particular, G is not allowed to
output any negative instance, and hence, it is more appropriate to speak of G
as a generator for the promised NP search problem restricted to the positive
instances.

Definition 1 (Test Instance Generator [Wat94]) Let (R, µ) be a distri-
butional NP search problem and let D be the domain of R. A probabilis-
tic polynomial-time Turing machine G is called a test instance generator for
(R, µ) if there is a polynomial q such that for all n,

1. on every path, G(0n) outputs either ⊥ or a pair 〈x,w〉 such that R(x,w)
and x ∈ Σn, and

2. if µ(D=n) > 0, then for every x ∈ D=n, G(0n) outputs with probability
at least ρn(x)/q(n) a pair of the form 〈x,w〉, w ∈ Σ∗. Here, ρn(x) =
µ(x)/µ(D=n) is the probability of x under the condition that x belongs
to D=n.

As shown by Watanabe, generators of this type can be used to detect,3-2

for a given input length n (in expected time polynomial in n and 1/ε), that
an algorithm makes an error, provided that errors occur with probability ε
(with respect to ρn). Furthermore, they can be used to find out that an
algorithm is not efficient (with respect to ρn) [Wat94]. More precisely, if G

6
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is a test instance generator for a search problem (R, µ), then the quality of
a given algorithm A with respect to ρn can be verified as follows.

1. If A makes an error on strings of length n with probability at least
ε, then with probability at least ε, A makes at least one error on a
polynomial-size sample S generated by G, i.e., the test instances in S
are obtained by running G(0n) a polynomial number of times.

2. If A needs more than nk steps on Σn with probability at least ε, then
with probability at least ε, A needs more than nk steps on some input
from a polynomial-size sample S generated by G.

We note that, since in Definition 1 the probability that G(0n) outputs 〈x,w〉
is not bounded from above, an algorithm A may take exponential time on av-
erage under the distribution induced by the generator even if A is polynomial
on ρ-average. In fact, it may happen that G produces with high probability
instances that have probability zero with respect to ρ.

The following result, due to Watanabe, shows that it is unlikely that there3-3

exists a test instance generator for every distributional NP search problem.

Theorem 1 ([Wat94]) If every NP search problem has a test instance gen-
erator under the standard distribution, then RE = NE.

In fact, the proof shows that randomly computing instance/witness pairs for
all NP search problems with a tally domain is impossible, unless RE = NE.
Similarly, it can be seen that there are total NP search problems (i.e., with
domain Σ∗) that do not have test instance generators under the standard dis-
tribution, unless NE∩co-NE ⊆ RE. This shows that generating test instances
for an NP search problem for which decision is easy might nevertheless be
hard.

We now show that generating test instances in Watanabe’s model may be3-4

impossible even for trivial search problems since, for some distributions, it is
necessary to amplify the probability of the positive instances of fixed length
by an exponential factor.

Theorem 2 Let R = {〈x, 1〉 | x ∈ Σ∗ − {1}∗}. If for every p-samplable dis-
tribution µ there exists a test instance generator for (R, µ), then RE = NE.

Proof of Theorem 2 Since RE = NE if and only if NP ∩ TALLY ⊆ RPProof of Theorem 2-1

[Boo74], it suffices to show that the assumption implies that every tally NP
7
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set T is contained in RP. Let RT be a binary relation and p be a polynomial
such that for all n, 0n ∈ T if and only if there exists a string w ∈ Σp(n) with
RT (0n, w).

Now consider the p-samplable distribution µ generated by the followingProof of Theorem 2-2

probabilistic algorithm:

First, guess a positive integer n with probability proportional to
n−2. Then, uniformly guess a string w ∈ Σp(n) and output w in
case RT (0n, w) holds; else, output 1p(n).

Then any test instance generatorG for (R, µ) has the property that, if 0n ∈ T ,
then either RT (0n, 1p(n)) holds or G(0p(n)) outputs with probability 1/nO(1) a
pair 〈w, 1〉 for which RT (0n, w) holds. Note that, in the latter case, ρp(n){w ∈
Σp(n) | RT (0n, w)} = 1.

Proof of Theorem 2 2

An interesting question is whether the converse of Theorem 1 (or of The-3-5

orem 2) is also true. As shown below, non-adaptive queries to an NP set are
sufficient to generate test instances for any distributional NP search prob-
lem. This implies in particular that under the assumption NP = RP, any
distributional NP search problem has a test instance generator.

As shown in the following proposition, O(log n) many queries to any oracle3-6

are not helpful for a generator in Watanabe’s model.

Proposition 1 If, for a distributional NP search problem (R, µ), test in-
stances can be generated with O(log n) queries to some oracle, then there
exists a test instance generator for (R, µ).

Proof of Proposition 1 Let M be a probabilistic oracle Turing machine
that generates test instances by asking O(log n) queries to some oracle. Let
M ′ simulate M where each oracle query is answered by a fair coin toss.
If M outputs a pair 〈x,w〉, then M ′ outputs 〈x,w〉 only if R(x,w) holds,
and outputs ⊥ otherwise. Then the probability that all oracle answers are
guessed correctly is 1/nO(1), implying that M ′ still fulfills the conditions of
Definition 1.

Proof of Proposition 1 2

8

Chicago Journal of Theoretical Computer Science 1999-4
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The upper bound on the complexity of generating test instances that we3-7

will give in Theorem 3 below is based on the universal hashing technique
[CW79, Sip83, VV86]. Let Hm,k be the class of all linear hash functions from
Σm to Σk. The following lemma is straightforward (cf. [Pap94]).

Lemma 1 Let S be a subset of Σm of cardinality ‖S‖ = s such that 2k ≤
3s ≤ 2k+1 and let x ∈ S. Then, for a uniformly chosen hash function h from
Hm,k, it holds with probability at least 2/(9s) that x is the only element in
S with h(x) = 0k. Hence, with probability at least 2/9, there exists a unique
x ∈ S with h(x) = 0k.

Proof of Lemma 1 Since Hm,k is a universal class of hash functions, it
follows for a uniformly chosen h that Prob

[
h(x) = 0k

]
= 2−k and that

Prob
[
h(x) = 0k ∧ ∃y ∈ S − {x} : h(y) = 0k

]
≤

∑
y∈S−{x}

Prob
[
h(x) = 0k ∧ h(y) = 0k

]
< s2−2k.

Consequently, the probability that x is the only pre-image of 0k in S can be
calculated as follows.

Prob
[
h(x) = 0k ∧ ∀y ∈ S − {x} : h(y) 6= 0k

]
= Prob

[
h(x) = 0k

] − Prob
[
h(x) = 0k ∧ ∃y ∈ S − {x} : h(y) = 0k

]
> 2−k(1 − s2−k)
≥ 2/(9s), since s2−k(1 − s2−k) ≥ 2/9 for 1/3 ≤ s2−k ≤ 2/3.

Proof of Lemma 1 2

Theorem 3 For every distributional NP search problem (R, µ), test instances
can be generated with parallel queries to some set in NP.

Proof of Theorem 3 Let D be the domain of R and let q be a polynomial
such that |w| = q(|x|) for all solutions w for x. Let M be a probabilistic
Turing machine witnessing that µ is p-samplable and let p be a polynomial
time bound forM , i.e., the time used byM(λ) to output a string x is bounded
by p(|x|). For any string r ∈ Σp(n), let Mr(λ) denote the output of M (if
any) when using sequence r as random source. The test instance generator
G for (RD, µ) is defined as follows.

9
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On input 0n, G first guesses two integers k ∈ {1, . . . , p(n) + 1},
l ∈ {1, . . . , q(n) + 1} and two linear hash functions h1 ∈ Hp(n),k,
h2 ∈ Hq(n),l. By asking in parallel the queries yi = 〈0n, i, h1, h2〉,
1 ≤ i ≤ m = 2p(n) + q(n) + 2, to the oracle A, G obtains
a sequence s = A(y1) . . . A(ym) of oracle answer bits. Then G
determines strings r ∈ Σp(n), w ∈ Σq(n), and x ∈ Σ∗ such that
〈r, w〉 = s and x = Mr(λ). Finally, if |x| = n and R(x,w) hold,
then G outputs the pair 〈x,w〉; otherwise, G outputs the symbol
⊥.

For every x, let Sx = {r ∈ Σp(|x|) | Mr(λ) = x} denote the set of all random
sequences r using which M outputs x, and let Sn =

⋃
x∈D=n Sx. For every

r ∈ Sn let αr denote the probability that G(0n) guesses integers k, l and linear
hash functions h1, h2 such that r is the only string in Sn with h1(r) = 0k and
there exists a unique solution w for Mr(λ) with h2(w) = 0l. Then it follows
by Lemma 1 that

αr ≥ 1
(p(n) + 1)(q(n) + 1)

· 2
9 · ‖Sn‖ · 2

9
.

Now consider the following NP oracle set A defined as

〈0n, i, h1, h2〉 ∈ A ⇔ ∃〈r, w〉 : h1(r) = 0k, r ∈ Sn, h2(w) = 0l,

R(Mr(λ), w), and the ith bit of 〈r, w〉 is 1.

Then it follows that, for every x ∈ D=n, G(0n) outputs a pair of the form
〈x,w〉, w ∈ Σ∗, with probability at least

∑
r∈Sx

αr ≥ 4 ‖Sx‖
81(p(n) + 1)(q(n) + 1) ‖Sn‖ =

4
81(p(n) + 1)(q(n) + 1)

· ρn(x).

Proof of Theorem 3 2

We end this section by observing that the above theorem can easily be ex-
tended to the Monte Carlo type of generators that we will introduce in the
next section.

10
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4 Test Instance Generation Without Ampli-
fication

In this section we propose a slightly different model of generating test in-4-1

stances. As explained above, our aim is to verify the quality of a given
algorithm but to avoid the need for amplifying the probability of the positive
instances by a possibly exponential factor. This goal is achieved by allowing
the generator not only to output pairs 〈x,w〉, where x is a positive instance
and w is a solution for x, but also to output pairs of the form 〈x, λ〉, where
x might be negative as well. (Recall our assumption that λ is not a solution
for any instance.) In the definition of a Monte Carlo generator, we also allow
that positive instances x be generated (with small probability) in the form
〈x, λ〉, whereas this is totally forbidden for a Las Vegas generator. Before
we proceed to the formal definition of these generators, let us explain why
it might be easier to generate test instances for a distributional NP search
problem than to solve the problem itself.

Intuitively, a generator for a distributional NP search problem can benefit4-2

from the advantage that it may intertwine the process of randomly gener-
ating an instance with the process of constructing a suitable solution. In
contrast, an algorithm has to solve the problem on instances that are ran-
domly generated “from outside.” Thus, there might exist distributional NP
search problems for which it is easier to generate instance/witness pairs than
to solve the problem. In fact, this phenomenon is exploited in the design
of many cryptographic protocols, such as in generating public keys together
with some (secret) trapdoor information. For example, the security of the
RSA cryptosystem is based on the practical hardness of the factorization
problem, i.e., no efficient-on-average algorithm is known (under the standard
distribution) that on input of n outputs a factor of n in case n is compos-
ite, and outputs “prime” otherwise. On the other hand, it is computationally
easy to randomly generate composite numbers together with some factor. In-
deed, it is not hard to construct a Las Vegas generator for the corresponding
search problem (see Proposition 4).

Next we define the notion of an instance generator for a distributional4-3

NP search problem (R, µ). An instance generator G efficiently generates
instances in accordance with the distribution µ. Furthermore, it provides,
along with each generated instance x, either some solution w (implying that
x belongs to the domain of R) or the empty string λ (implying absolutely

11
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nothing on the membership status of x). In fact, an instance generator may
only output pairs of the form 〈x, λ〉. In order to force G to generate “good”
test instances, we will later impose an additional bound on the probability
that G outputs a pair 〈x, λ〉 when x is positive.

Definition 2 (instance generator) Let (R, µ) be a distributional NP search
problem. A probabilistic Turing machine G (with output but with no input)
is called an instance generator for R under µ if

1. on every halting computation, G outputs a pair 〈x,w〉 with the property
that either R(x,w) holds or w = λ,

2. the time needed by G to output a pair of the form 〈x,w〉, w ∈ Σ∗, is
polynomially bounded in |x|, and

3. µG is equivalent to µ, where µG(x) is the probability that G generates
instance x, i.e., µG(x) =

∑
w∈Σ∗ µG(x,w), where µG(x,w) is the prob-

ability that G outputs the pair 〈x,w〉.
Note that if G were required to stop on all paths, then only finitely many
instances could be generated. Actually, we allow that µG(Σ∗) < 1, i.e., G
might run forever with positive probability. Also, if µ(Σn) = 1/nO(1), then
G can easily be modified to produce instances of a given length according
to the conditional probability of that length. (This is similar to Watanabe’s
model, but note that the generator might still output negative instances.)

Suppose that G is an instance generator for a distributional NP search4-4

problem (R, µ) and let A be an algorithm. Since the distributions µ and µG

are equivalent, the running time of A is polynomial on µ-average if and only
if it is polynomial on µG-average [Lev86].

We distinguish between two types of generators, depending on the quality4-5

of the generated test instances. A Monte Carlo generator is allowed to err
with small probability, whereas a Las Vegas generator only generates test
instances that are correctly classified.

Definition 3 (Monte Carlo generator) Let G be an instance generator for a
distributional NP search problem (R, µ) with domain D.

1. G is called a Monte Carlo generator for R under µ if for every polynomial
q,

µG(x, λ) ≤ µG(x)
q(|x|)

12
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holds for all but finitely many instances x in D.

2. G is called a Las Vegas generator for R under µ if G never outputs a
pair 〈x, λ〉 with x ∈ D.

We note that if µ(D=n) = 1/nO(1), then any Monte Carlo generator for4-6

(R, µ) can be transformed into a test instance generator for (R, µ) according
to Watanabe’s model.

We next show how a Monte Carlo generator can be used to find out4-7

efficiently and with high confidence whether a given algorithm A for a distri-
butional NP search problem (R, µ) is correct with respect to the underlying
probability distribution µ. Without loss of generality, we can assume that A
makes only errors on instances in the domain D of R. More formally, for any
subset D′ of D, we call the probability µ{x ∈ D′ | A(x) = λ} that x ∈ D′

and A does not find a witness for x the error rate of A on D′. We say that a
pair 〈x,w〉 convicts A on D′ if R(x,w) and x ∈ D′ hold, but A(x) = λ.

Theorem 4 Let G be a Monte Carlo generator for a distributional NP search
problem (R, µ) and let D be the domain of R. Then there exists a polynomial-
time probabilistic transducer T such that the following statements hold for any
search algorithm A.

• If the error rate of A on D≤l is at least 1/m, then for all n, T on input
〈1n, 1m, 1l〉 produces with probability at least 1−2−n a sequence of pairs,
at least one of which convicts A on D≤l.

• If additionally, A is polynomial on µ-average then for some polynomial
t, the sequence contains with probability at least 1 − 2−n a pair 〈x,w〉
that convicts A on D≤l and for which A(x) stops after at most t(l,m)
steps.

Proof of Theorem 4 Let G be a Monte Carlo generator for (R, µ) andProof of Theorem 4-1

let q be a polynomial such that |w| = q(|x|) for all solutions w of x. By
Definition 2(3), there is a polynomial p such that for all instances x,

µ(x)/p(|x|) ≤ µG(x) ≤ p(|x|) · µ(x).

Since Definition 3(1) guarantees that for all but finitely many x ∈ D, µG(x, λ) ≤
µG(x)/2, we can assume that, for all instances x ∈ D,∑

w∈Σq(|x|)

µG(x,w) ≥ µG(x)/2 ≥ µ(x)/(2p(|x|)).

13
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Since the error rate of A onD≤l is at least 1/m, it follows that G outputs with
probability at least 1/(2mp(l)) a pair 〈x,w〉 with x ∈ D≤l and A(x) = λ.
Therefore, during 2mnp(l) independent computations, G will output with
probability at least 1−(1−1/(2mp(l)))2mnp(l) > 1−2−n some pair 〈x,w〉 with
x ∈ D≤l and A(x) = λ. Note that since the running time of G is polynomially
bounded in the length of the output, T can suspend the simulation of G after
a polynomial number (in l) of steps.

Note that since µ and µG are equivalent, the assumption that A is poly-Proof of Theorem 4-2

nomial on µ-average implies that A is polynomial on µG-average, i.e., there
exist constants k, c > 0 such that

∑
x 6=λ

timeA(x)1/k

|x| ·µ(x) < c, where timeA(x)
denotes the running time of A on input x. Hence, it follows that

µG{x ∈ D≤l | A(x) runs for more than t(l,m) steps} ≤ 1/(4mp(l)),

where t is the polynomial t(l,m) = (2cmlp(l))k. This implies that G outputs
with probability at least 1/(4mp(l)) a pair 〈x,w〉 that convicts A on D≤l and
for which A(x) stops after at most t(l,m) steps.

Proof of Theorem 4 2

It is interesting to note that the assumption in the above theorem can be4-8

weakened for certain distributions µ. In fact, if µ has the property that for
some polynomial q and all n,∑

x:|x|>q(n) µ(x) ≤ 1/n,

and if the error rate of A on D (instead of D≤l as in the above theorem) is at
least 1/m, then it follows that µ{x ∈ D≤q(2m) | A(x) = λ} ≥ 1/(2m). Hence,
letting T ′(1n, 1m) = T (1n, 12m, 1q(2m)), the above theorem implies that with
probability at least 1 − 2−n, T ′(1n, 1m) produces an instance x ∈ D≤q(2m)

with A(x) = λ.
Next we consider distributional RP search problems (R, µ) (meaning that4-9

the binary relation R witnesses that its domain DR belongs to RP, i.e.,
each x ∈ DR has at least 2qR(|x|)−1 many solutions). As shown below, in-
stance/witness pairs for (R, µ) can be easily generated by sampling a string
x according to µ and randomly generating a witness for x.

Proposition 2 For every distributional RP search problem (R, µ) there ex-
ists a Monte Carlo generator.

14
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Proof of Proposition 2 Let D be the domain of R and let q be a polyno-
mial such that |w| = q(|x|) for all solutions w of x. Let M be a probabilistic
Turing machine witnessing that µ is p-samplable. Consider the following
instance generator G for (R, µ).

Simulate M . In case M outputs an instance x, |x| = n, guess
randomly and independently a sequence w1, . . . , wn of strings of
length q(n) and determine the lexicographically largest string w
in the set {λ} ∪ {wi | 1 ≤ i ≤ n and R(x,wi) holds}. Output the
pair 〈x,w〉.

It is easy to verify that G is a Monte Carlo test instance generator for (R, µ).

Proof of Proposition 2 2

As shown in the next theorem, it is unlikely that every NP search problem4-10

has a Monte Carlo generator under the standard probability distribution.
In fact, Monte Carlo generators can only exist if the domain of the search
problem belongs to co-AM. As a consequence, Monte Carlo generators do
not exist for NP search problems with an NP-complete domain unless the
polynomial-time hierarchy collapses to the second level [BHZ87, Sch88]. For
definitions of the class AM and of Arthur-Merlin games we refer the reader
to [BM88] or to a textbook, such as [BDG90] or [KST93].

Theorem 5 If there exists a Monte Carlo generator for an NP search prob-
lem R under the standard distribution, then the domain of R is contained in
co-AM.

Proof of Theorem 5 Let G be a Monte Carlo generator for (R, µst) andProof of Theorem 5-1

let p be a polynomial bounding the running time of G. From Definition 2(3),
we can conclude that, for some polynomial s,

1
s(|x|)2|x| ≤ µG(x) ≤ s(|x|)

2|x| .

From Definition 3(1), we know that, for any polynomial q,

µG(x, λ) ≤ µG(x)
q(|x|)

holds for all but finitely many x in the domain D of R. Now let Sx be the
set of strings r ∈ Σp(n) such that G outputs the pair 〈x, λ〉 when using r as

15
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random source. Let q(n) be the polynomial 25s(n)2. Then, for all but finitely
many x, the following implications are true (where n = |x|).

x ∈ D ⇒ µG(x, λ) ≤ s(n)
2nq(n)

⇒ ‖Sx‖ ≤ s(n)2p(n)

2nq(n)
⇒ ‖Sx‖ ≤ 2p(n)−n−5

s(n)
,

x 6∈ D ⇒ µG(x, λ) ≥ 1
s(n)2n

⇒ ‖Sx‖ ≥ 2p(n)

s(n)2n
⇒ ‖Sx‖ ≥ 2p(n)−n

s(n)
.

Therefore, letting k(n) = p(n) − n − dlog2 s(n)e − 2, it follows, for all but
finitely many x ∈ D, that ‖Sx‖ ≤ 2k(n)−2 and for all but finitely many x 6∈ D,
that ‖Sx‖ ≥ 2k(n)+2.

Now consider for a fixed instance x (for which the above implications areProof of Theorem 5-2

true) the random variable Z that for a uniformly chosen h in Hp(n),k(n) gives
the number of strings r ∈ Sx for which h(r) = 0k(n). Then the expectation of
Z is E(Z) = 2−k(n) ‖Sx‖ and the variance is V (Z) = 2−k(n)(1−2−k(n)) ‖Sx‖ <
E(Z) [VV86]. Thus, by using Chebyshev’s inequality it follows that

x ∈ D ⇒ Prob[Z ≥ 1] ≤ E(Z) ≤ 1/4,

x 6∈ D ⇒ Prob[Z = 0] ≤ Prob[|Z − E(Z)| ≥ E(Z)] ≤ V (Z)/E(Z)2 < 1/E(Z) ≤ 1/4.

The Arthur-Merlin protocol for D proceeds as follows: On input x, |x| = n,
Arthur randomly chooses a hash function h ∈ Hp(n),k(n) and asks Merlin
to show him a string r ∈ Sx with h(r) = 0k(n). Since Merlin succeeds
with probability at least 3/4, if x 6∈ D, and with probability at most 1/4,
otherwise, it follows that D ∈ AM.

Proof of Theorem 5 2

It is interesting to note that the above proof can easily be extended to any4-11

NP search problem (R, µ), where µ is positive and 1/µ(x) can be polynomially
approximated by an FP function f(x), i.e., for some constant c and all x,
f(x) ≤ 1/µ(x) ≤ f(x) · |x|c.

By combining Theorem 5 with the result that NP is not contained in4-12

co-AM unless the polynomial-time hierarchy collapses to the second level
[BHZ87, Sch88], we obtain the following corollary.

Corollary 1 If there exists a Monte Carlo generator for some distributional
NP search problem (R, µst) whose domain is NP-complete, then PH = ΣP

2 .
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We end this section by considering the Las Vegas type of generators.4-13

Define a ZPP search problem to be a RP search problem whose domain is
in ZPP. Then a Las Vegas generator can be constructed for any ZPP search
problem in a similar way as in the proof of Proposition 2.

Proposition 3 For every distributional ZPP search problem there exists a
Las Vegas generator.

It is also interesting to observe that some search problems that are not4-14

known to be efficiently solvable have a Las Vegas generator. As an example,
we consider the prime factorization problem under the standard distribution
µst. We assume that numbers are given in binary, i.e., the string x is used
to describe the number (denoted by nx) with the binary representation 1x.
More precisely, let Rprime denote the witness relation defined as

Rprime(x,w) =

{
1, nw is a prime factor of nx and nw < nx,

0, otherwise.

Proposition 4 There exists a Las Vegas generator for the prime factoriza-
tion problem (Rprime, µst).

Proof of Proposition 4 Recall that the domain of Rprime belongs to ZPPProof of Proposition 4-1

[AH87], i.e., there is a probabilistic polynomial-time algorithm A that on in-
put of x either accepts (implying that nx is prime) or rejects (implying that
nx is composite) or outputs “?” (with probability at most 1/2). Furthermore,
since the standard distribution µst is equivalent to some p-samplable distri-
bution, there is a probabilistic Turing machine M that on input λ outputs
x with probability µM(x), where µst(x)/4 ≤ µM(x) ≤ 4µst(x) (cf. [BCGL92,
Theorem 7]).

Now consider the following generator G:Proof of Proposition 4-2

With probability 1/2, execute step (1) or step (2).

(1) Choose randomly under µM a string x in Σ∗. If A(x) accepts,
then output 〈x, λ〉. Otherwise, loop forever.

(2) Choose randomly and independently under µM two strings
y, w ∈ Σ∗. If A(w) accepts and if y 6= λ, then output 〈x,w〉,
where 1x is the binary representation of ny · nw. Otherwise, loop
forever.
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It is easy to see that G fulfills conditions (1) and (2) of Definition 2 as well
as condition (2) of Definition 3. Furthermore, it is not hard to verify that
the distribution µG induced by G is equivalent to µst (i.e., G also fulfills
Definition 2(3)), implying that G is a Las Vegas generator for (Rprime, µst).

Proof of Proposition 4 2

On the other hand, Las Vegas generators can only exist for NP search4-15

problems whose domain belongs to NP ∩ co-NP.

Proposition 5 If there exists a Las Vegas generator for an NP search prob-
lem R under the standard distribution µst, then the domain of R is contained
in co-NP.

Proof of Proposition 5 Let D be the domain of a search problem R and
let G be a Las Vegas generator for (R, µst) whose running time is bounded
by some polynomial s. We show that D ∈ NP. Consider the following NP
machine M :

On input x, simulate G for at most s(|〈x, λ〉|) steps and accept if
G outputs the pair 〈x, λ〉.

Since µst(x) > 0 for all x and since G is a Las Vegas generator for (R, µst),
M accepts x if and only if x ∈ D.

Proof of Proposition 5 2

Corollary 2 If there exists a Las Vegas generator for some distributional NP
search problem (R, µst) whose domain is NP-complete, then NP = co-NP.

As a final remark, it is not hard to see that, for every set L that has4-16

self-computable witnesses (in the sense of [BD76, Bal89]), there is a Las
Vegas generator using L as an oracle. For example, since graph isomor-
phism (GI) and graph automorphism (GA) have self-computable witnesses
and non-adaptively self-computable witnesses, respectively (cf. [Sch76] and
[LT93, Lemmas 5.2 and 5.3]), there exist Las Vegas generators for the cor-
responding search problems that ask adaptive (non-adaptive) queries to GI
(GA, respectively).
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5 Hard Problems for Test Instance Genera-
tion

In this section we consider the question of how the test instance generation5-1

problem for one NP search problem (S, ν) can be reduced to the test in-
stance generation problem for another NP search problem (R, µ). Inspired
by [Wat94], we provide a way to transform a Monte Carlo or Las Vegas gen-
erator for (S, ν) to a generator for any problem (R, µ) that reduces to (S, ν)
via the following kind of reduction.

Definition 4 Let (R, µ) and (S, ν) be distributional NP search problems.
Let DR (DS) be the domain of R (S, respectively). Then (R, µ) is generator
reducible to (S, ν) if there exist functions f, g ∈ FP and polynomials p, q such
that:

1. For all y and r, if f(y, r) 6= ⊥, then f(y, r) ∈ DR if and only if y ∈ DS.

2. For all y, v, and r, if f(y, r) 6= ⊥ and S(y, v), then R(f(y, r), g(y, v, r)).

3. f is honest, i.e., for all y, r, if f(y, r) 6= ⊥ then p(|f(y, r)|) ≥ |y|.
4. µ is equivalent to φ, where φ is the distribution induced by ν, q, and f ,

i.e., φ(x) =
∑

y,r ν(y)2
−|r|, where the sum ranges over all strings y, r

such that |r| = q(|y|) and f(y, r) = x.

Two distributional NP search problems are called generator equivalent if they
are generator reducible to each other.

In the sequel, we assume without loss of generality that f(y, rr′) = f(y, r)5-2

for all y, r, r′ such that |r| = q(|y|), and that g(y, λ, r) = λ for all y, r.

Proposition 6 If (R, µ) is generator reducible to (S, ν) and if there exists
a Monte Carlo (Las Vegas) generator for (S, ν), then there exists a Monte
Carlo (Las Vegas, respectively) generator for (R, µ).

Proof of Proposition 6 Assume that (R, µ) reduces to (S, ν) via the func-Proof of Proposition 6-1

tions f , g and the polynomials p, q. Let G be a generator for (S, ν). Consider
the following algorithm G′.

Simulate G. If G produces a pair 〈y, v〉, then randomly guess
a string r ∈ {0, 1}q(|y|). If f(y, r) 6= ⊥, then output the pair
〈f(y, r), g(y, v, r)〉; otherwise, loop forever.
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We claim that G′ is an instance generator for (R, µ) (of the same type as
G). By Definition 4 we know that if G′ outputs 〈x,w〉, then either R(x,w)
or w = λ. Let C(x) = {(y, r) | f(y, r) = x, |r| = q(|y|)} and let t and t′ be
polynomials such that µG(x) ≥ ν(x)/t(|x|) and φ(x) ≥ µ(x)/t′(|x|), where φ
is the distribution induced by f , q, and ν. Then we have, for all x,

µG′(x) =
∑

(y,r)∈C(x)

µG(y) 2−|r|

≥
∑

(y,r)∈C(x)

1
t(|y|)ν(y) 2−|r|

≥ 1
t(p(|x|))

∑
(y,r)∈C(x)

ν(y) 2−|r|

︸ ︷︷ ︸
φ(x)

≥ 1
t(p(|x|)) t′(|x|)µ(x).

Thus, µ � µG′ , and since µG′ � µ can be derived in a similar way, µG′ ≡ µ
follows. Furthermore, since f is honest, the time needed by G′ to output a
pair 〈x,w〉 is polynomially bounded in |x|.

Assume now that G is a Monte Carlo generator for (S, ν). We have toProof of Proposition 6-2

show that for any polynomial t and almost all x ∈ DR, µG′(x) ≥ t(|x|) ·
µG′(x, λ). Let s be a polynomial such that |f(y, r)| ≤ s(|y|) for all y and
r, |r| = q(|y|). Since G is a Monte Carlo generator, it holds for almost all
y ∈ DS that µG(y) ≥ t(s(|y|)) · µG(y, λ). Then, for all sufficiently large
x ∈ DR it follows that

µG′(x) =
∑

(y,r)∈C(x)

µG(y) 2−|r|

≥
∑

(y,r)∈C(x)

t(s(|y|))µG(y, λ) 2−|r|

≥ t(|x|)
∑

(y,r)∈C(x)

µG(y, λ) 2−|r|

= t(|x|) · µG′(x, λ).

Thus, it follows that G′ is a Monte Carlo generator for (R, µ).
In the case that G is a Las Vegas generator for (S, ν), it follows imme-Proof of Proposition 6-3

diately from the properties of f and g that G′ is a Las Vegas generator for
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(R, µ).

Proof of Proposition 6 2

Another important property of the generator reducibility is transitivity.

Proposition 7 The generator reducibility is transitive.

Proof of Proposition 7 Let (Ri, µi), i = 1, 2, 3, be distributional NP search
problems. Let Di be the domain of Ri, i = 1, 2, 3. Assume that (Ri, µi) is
generator reducible to (Ri+1, µi+1) via the functions fi, gi ∈ FP and the poly-
nomials pi, qi, i = 1, 2. Consider the functions f and g defined as

f(y, r1, r2) =

{
f1(f2(y, r2), r1), f2(y, r2) 6= ⊥,
⊥, otherwise.

and

g(y, v, r1, r2) =

{
g1(f2(y, r2), g2(y, v, r2), r1), R3(y, v), f(y, r1, r2) 6= ⊥,
λ, otherwise.

Since f1 and f2 satisfy the conditions of Definition 4, it follows that f and g
fulfill the following conditions for all y, r1, r2 with f(y, r1, r2) 6= ⊥.

1. y ∈ D3 ⇔ f2(y, r2) ∈ D2 ⇔ f1(f2(y, r2), r1)︸ ︷︷ ︸
f(y,r1,r2)

∈ D1,

2. R3(y, v) ⇒ R2(f2(y, r2), g2(y, v, r2))
⇒ R1(f1(f2(y, r2), r1)︸ ︷︷ ︸

f(y,r2r1)

, g1(f2(y, r2), g2(y, v, r2), r1)︸ ︷︷ ︸
g(y,v,r2r1)

),

3. |y| ≤ p2(p1(|f1(f2(y, r2), r1)|)) ≤ p2(|f2(y, r2)|), and

4. µ1 ≡ φ(x), where φ is the distribution induced by f , q, and µ3. Indeed,
since |f2(y, r2)| is polynomially bounded in |y|, there exists a polynomial
q such that q2(|y|) + q1(|f2(y, r2)|) ≤ q(|y|) for all y, r2 with f2(y, r2) 6=
⊥. For a given x, consider the following sets:

A(x) = {(y, r1, r2) | f(y, r1, r2) = x, |r2| = q2(|y|), |r1| = q(|y|) − q2(|y|)},
B(x) = {(y, r1, r2) | f(y, r1, r2) = x, |r2| = q2(|y|), |r1| = q1(|f2(y, r2)|)},
C1(x) = {(z, r1) | f1(z, r1) = x, |r1| = q1(|z|)},
C2(z) = {(y, r2) | f2(y, r2) = z, |r2| = q2(|y|)}.
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For i = 1, 2, let φi be the distribution induced by fi, qi, and µi+1. Since
µi ≡ φi, it follows that

φ(x) =
∑

(y,r1,r2)∈A(x)

µ3(y)2−|r1r2|

=
∑

(y,r1,r2)∈B(x)

µ3(y)2−|r1r2|

=
∑

(z,r1)∈C1(x)

2−|r1| ·
∑

(y,r2)∈C2(z)

µ3(y)2−|r2|

︸ ︷︷ ︸
φ2(z)

≥
∑

(z,r1)∈C1(x)

2−|r1| 1
p(|z|)µ2(z) (since µ2 ≡ φ2)

≥ 1
p′(|x|)

∑
(z,r1)∈C1(x)

2−|r1|µ2(z)

︸ ︷︷ ︸
φ1(x)

(since f1 is honest)

≥ 1
p′′(|x|)µ1(x) (since µ1 ≡ φ1),

where p, p′ and p′′ are appropriately chosen polynomials. Thus, we
have µ1 � φ, and since φ � µ1 can be shown similarly, it follows that
µ1 ≡ φ.

Using the properties derived above it is easy to see that (R1, µ1) is generator
reducible to (R3, µ3) via the functions f̂ , ĝ, where

f̂(y, r) =

{
f(y, λ, r), |r| < q2(|y|),
f(y, r1, r2), r = r1r2, |r2| = q2(|y|).

and ĝ is defined analogously.

Proof of Proposition 7 2

Next we present two problems from group theory that are generator equiv-
alent. For this we need some notions from elementary group theory. For
a more detailed introduction to group theory, we refer to [Hum96, Cam95].
Our reductions are based on the ones given in [Hof82].
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Karg, Köbler, and Schuler Complexity of Generating Test Instances §5

Sn denotes the symmetric group of {1, . . . , n}, i.e. the set of all permu-5-3

tations over {1, . . . , n}. For a set A ⊆ Sn, we denote by 〈A〉 the smallest
subgroup of Sn that contains A. A is called a generator set for 〈A〉. It is
known that every subgroup of Sn can be generated by a set of at most n− 1
permutations [Jer82].

Double Coset Membership (DCM, µDCM)

Instance. Positive integer n (given in unary), sets A,B ⊆ Sn such that 1 ≤
‖A‖ , ‖B‖ ≤ n− 1 and permutations π, ψ ∈ Sn.

Question. Do there exist α ∈ 〈A〉, β ∈ 〈B〉 such that ψ = απβ?

Distribution. Randomly and independently choose a positive integer n (with
probability 1

n(n+1)); then guess randomly and independently two inte-
gers a, b ∈ {1, . . . , n− 1} under uniform distribution. Guess randomly
and uniformly a+ b+ 2 permutations from Sn. The density function is

µDCM(1n, A,B, π, ψ) =
1

n(n+ 1) (n− 1)2 (n!)‖A‖+‖B‖+2 .

Group Factorization (GF, µGF)

Instance. Positive integer n (given in unary), sets A,B ⊆ Sn such that 1 ≤
‖A‖ , ‖B‖ ≤ n− 1 and a permutation ψ ∈ Sn.

Question. Do there exist α ∈ 〈A〉, β ∈ 〈B〉 such that ψ = αβ?

Distribution. Randomly and independently choose a positive integer n as
above; then guess randomly and independently two integers a, b ∈
{1, . . . , n − 1} under uniform distribution. Guess randomly and uni-
formly a+ b+ 1 permutations from Sn. The density function is

µGF(1n, A,B, ψ) =
1

n(n+ 1) (n− 1)2 (n!)‖A‖+‖B‖+1 .

Let RDCM (RGF) denote the search problem of DCM (GF, respectively).

Proposition 8 (RDCM, µDCM) and (RGF, µGF) are generator equivalent.
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Proof of Proposition 8 We first show that (RGF, µGF) is generator re-Proof of Proposition 8-1

ducible to (RDCM, µDCM). Since this reduction makes no use of the random
bits, we omit the parameter r. For any instance 〈1n, A,B, π, ψ〉 of DCM and
potential solution 〈α, β〉, the reduction (f, g) is defined as

f(1n, A,B, π, ψ) = 〈1n, π−1Aπ,B, π−1ψ〉

g(〈1n, A,B, π, ψ〉, 〈α, β〉) =

{
(π−1απ, β) α ∈ 〈A〉, β ∈ 〈B〉, ψ = απβ,

λ otherwise.

Since for a given set A of permutations and a given permutation α it can
be decided in polynomial time whether α belongs to 〈A〉 (see, for example,
[Hof82]), it is easy to verify that this is indeed a generator reduction from
(RGF, µGF) to (RDCM, µDCM). In fact, the density function induced by f and
µDCM coincides with µGF.

Next we argue that (RDCM, µDCM) is generator reducible to (RGF, µGF).Proof of Proposition 8-2

For any instance 〈1n, A,B, ψ〉 of GF and potential solution 〈α, β〉, the reduc-
tion (f, g) is defined as

f(〈1n, A,B, ψ〉, r) =

{
〈1n, A, π−1Bπ, π, ψπ〉, r describes a π ∈ Sn,

⊥, otherwise,

g(〈1n, A,B, ψ〉, 〈α, β〉, r) =




〈α, π−1βπ〉, α ∈ 〈A〉, β ∈ 〈B〉, ψ = αβ,

r describes a π ∈ Sn,

λ, otherwise.

Again, it is easy to verify that this is indeed a generator reduction. We
remark that the density function induced by f and µGF is equal to µDCM.

Proof of Proposition 8 2

Finally, we show the existence of a hard problem in the sense that every5-5

distributional NP search problem (R, µ) is generator reducible to it, provided
the distribution µ is p-computable and the probabilities µ(x) are not too
small.

Bounded Halting Problem (K,µK)

Instance. A nondeterministic Turing machine M , a binary string x, and a
positive integer k, given in unary.
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Question. Does M accept x within k steps?

Distribution. Randomly and independently guessM , x and k under standard
distribution, i.e., the density function µK is

µK(M,x, 1k) =
1

|M |(|M | + 1) 2|M | |x|(|x| + 1) 2|x| k(k + 1)
.

The definition of the search problem RK is straightforward:
RK(〈M,x, 1k〉, v) holds if and only if v describes an accepting computation
of M on input x of length ≤ k.

Theorem 6 Let R be an NP search problem and let µ be a p-computable
distribution such that for some polynomial p and all x, µ(x) ≥ 2−p(|x|). Then
(R, µ) is generator reducible to (RK , µK).

Proof of Theorem 6 Let (R, µ) be a distributional NP search problemProof of Theorem 6-1

such that µ is p-computable. Let D be the domain of R.
It is known [Lev86, Gur91, WB95] that D is many-one reducible to KProof of Theorem 6-2

via a function h ∈ FP that is one-one, length increasing, polynomial-time
invertible and for which µ(x) and µK(h(x)) are equivalent. Let f be an FP
function such that h(f(y)) = y for all y ∈ range(h). Furthermore, it is
possible to compute in polynomial time from a given witness v for h(x) some
witness w for x, i.e., there exists a function g ∈ FP such that R(x, g(h(x), v))
holds for every x, v with RK(h(x), v). Thus, for every y ∈ range(h), the
following statements hold.

1. f(y) ∈ D ⇔ y ∈ K,

2. RK(y, v) ⇒ R(f(y), g(y, v)),

3. p(|f(y)|) ≥ |y| (since h(f(y)) = y), and

4. µ(x) is polynomially related to
∑

y,f(y)=x µK(y).

This implies that (R, µ) generator reduces to (RK , µK) via f̂ and ĝ, where

f̂(y, r) =

{
f(y) y ∈ range(h)
⊥ otherwise

and ĝ is defined analogously.

Proof of Theorem 6 2
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Remark. In the proof of Theorem 6 we used the completeness of the
bounded halting problem for the class DistNP consisting of all pairs (L, µ)
such that L is in NP and µ is p-computable [Lev86, Gur91]. In fact, the
proof also works for other DistNP-complete problems such as the tiling prob-
lem, Post’s correspondence problem, the word problem for Thue systems and
groups, and LR(k) testing of context-free grammars [Lev86, Gur91, WB95,
Wan95, Kar97].

On the other hand, it remains open whether Theorem 6 can be extended5-7

to p-samplable distributions µ. Note that there exists a similar open prob-
lem in average-case theory, namely, whether every distributional NP prob-
lem with a p-samplable distribution many-one reduces to the bounded halt-
ing problem [BG95]. Interestingly, under randomized truth-table reductions,
every distributional NP (decision and search) problem with a p-samplable
distribution reduces to the bounded halting problem [IL90, BCGL92].
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