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M. Rodŕıguez-Artalejo F. Silbermann
P. Van Hentenryck D. S. Warren

∗ Area Editor

Executive Board: M. M. T. Chakravarty A. Hallmann
H. C. R. Lock R. Loogen
A. Mück

Electronic Mail: jflp.request@ls5.informatik.uni-dortmund.de

[ii]

The Journal of Functional and Logic Programming 1998-7



Improved Register Usage for Functional
Programs through Multiple Function Versions
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Abstract

To use registers effectively, functional programs rely on interproce-
dural register allocation. Existing interprocedural strategies adopt a
naive approach in the presence of recursion, and spill registers when-
ever necessary. Moreover, such recursion-induced spills cannot be
avoided, even by increasing the supply of registers. In this paper,
we describe a strategy that reduces memory spills due to recursion
by keeping multiple versions of the same function. Each version gets
a different register assignment and has different spilling characteris-
tics. Such a strategy shows better spilling behavior as compared to
the original (single version) program, but the extent of gain is largely
dependent on the control paths followed by the program during exe-
cution.

We first determine the number of versions of each function, so that
regardless of the execution path, the program with multiple function
versions is guaranteed to perform better than the original program.
Since some of these versions may be useless in the sense that they
may never be called during any course of execution, we also have the
problem of determining the number of meaningful versions. We solve
this problem by casting it in terms of voltage graphs. We then show
that by using properties of voltage graphs, we can reduce the number
of versions even further without adding to the number of spills.
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1 Introduction

Compilers for imperative programs rely primarily on intraprocedural register
allocation. Such strategies consider one procedure at a time for allocation,
with a call convention to handle the interface between procedures at the
call/return boundaries. This simple treatment seems to be satisfactory for
imperative programs. Since compilation is done on a per-procedure basis,
register allocation can be done as part of the regular compilation phase, and
does not have to be treated in a separate pass. Moreover, the number of
variables in a procedure matches the number of registers (8–16) in many
architectures.

Register-allocation algorithms for imperative programs usually consist of
a local allocation phase in which registers are allocated to variables local to
a basic block, and a global allocation phase in which registers are allocated
to variables that are live across several basic blocks inside a procedure body.
There are sophisticated code-generation algorithms [AJ76, AJU77] for doing
local register allocation, and then there are good global register-allocation
algorithms like the graph-coloring [Cha82] and TN-binding [WJW75] algo-
rithms. Such global allocation algorithms work well because (1) there are
large stretches of code between function calls which result in large live ranges
of variables, and (2) the number of variables in a procedure body is reason-
ably large.

Intraprocedural allocation does not go well with functional languages.
The reason is that a function body is usually small, and so is the number
of variables in it. Moreover, a function body mostly involves function calls,
and hence hardly produces good stretches of code where global register al-
location might be applied. The experiments conducted by Steenkiste and
Hennessy [SH89] on Lisp benchmark programs corroborate these facts. They
found that on average, only 11 instructions are executed between 2 consec-
utive function calls or returns. In addition, the most heavily used control
construct is recursion, which further aggravates the problem. Therefore, one
has to rely more on interprocedural allocation with provisions to handle re-
cursion.

2
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1.1 Related Work on Interprocedural Register Allo-
cation

Existing interprocedural register-allocation techniques can be classified into
two categories. In program-wide allocation, register allocation is taken out
of the regular compilation phase and done on all the variables of the pro-
gram in a separate phase. This approach is taken by Wall [Wal86], and by
Santhanam and Odnert [SO90]. In an incremental strategy, register alloca-
tion is done as a part of the procedure-by-procedure compilation process,
and interprocedural information is used to optimize the register save/restore
operations at individual call sites. This approach is taken by Steenkiste and
Hennessy [SH89], Chow [Cho88], and Appel [AS92].

Wall’s program-wide allocator first groups variables that cannot be live
concurrently into pseudoregisters. This property exists between variables in
sibling procedures in a call graph. Each global variable is also assigned its
own pseudoregister. The usage frequencies of local and global variables are
then used to determine the global usage frequency for each pseudoregister.
The pseudoregisters with the largest global usage counts are assigned to
registers, while others are allocated to memory. The code is then changed
at link time to reflect the result of the allocation. To handle recursion, the
same method is applied after collapsing each strongly connected component
(SCC) to a single node, so that the call graph is reduced to a directed acyclic
graph (DAG). After register allocation, the compiler inserts save and restore
instructions around the backward edges for all the registers that are in use
in an SCC.

Chow and Steenkiste and Hennessy use methods that work bottom-up on
a call graph (a DAG in the absence of recursion). Chow’s allocator initially
divides the register set into a caller-saved set and a callee-saved set . The
basic optimization is that the caller-saved registers that are not used by
callees do not have to be saved and restored by the parent procedure. The
compiler allocates variables to such registers as long as they are available,
and then starts using callee-saved registers in caller-save mode. However, to
save caller-saved registers for the upper regions of the call graph, a register
is used for a variable in caller-save mode only if the variable is used in all
execution paths in a procedure. Otherwise, the register is used in callee-save
mode. In the presence of recursion, the allocator switches back to the initial
division by spilling all callee-saved registers being used in caller-saved mode.

Steenkiste and Hennessy’s method works in the context of Lisp programs.

3
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It allocates the same set of registers to sibling functions, and attempts to give
a parent function a set of registers different from any of its children. If the
allocator runs out of registers while doing a bottom-up allocation, as it might
in the upper regions of the call graph, it switches to a plain strategy. In this
strategy, a function spills whatever registers it uses before making a call,
and restores them once the call returns. To handle recursion, each SCC
is replaced by a single compound node and each function in an SCC uses
registers from a common set of registers allocated to the SCC. Within an
SCC, a called function saves all the registers allocated to the calling function.
Moreover, functions outside an SCC do not use any of the registers allocated
to the SCC.

While Steenkiste and Hennessy’s method assumes that it is always bene-
ficial to save spills in the lower regions of the call graph, the method due to
Santhanam and Odnert tries to actually identify such regions [SO90]. They
call such a region a cluster . Informally, a cluster is a collection of nodes in
the call graph such that (1) if registers are spilled at the root of the cluster,
then calls corresponding to the interior nodes of the cluster do not need to
spill; and (2) interior nodes are called more frequently than the root. Clearly,
under such conditions it would be beneficial to save spills within a cluster.
Their other concern is to share registers among global variables. This is in
contrast to Wall’s method [Wal86], where a register is allocated to a global
variable for the entire program. This approach is very similar to the approach
by Murtagh [Mur91] for allocating frames to procedures in block-structured
languages. Murtagh identifies clusters in a call graph, and whenever the root
of a cluster is called, he allocates space required by all the members of the
cluster. Therefore, no frame allocation needs to be done for a procedure that
is not the root of any cluster. As a consequence, such procedures have much
shorter calling sequences.

In continuation-passing style (CPS) -based compilers, the context of a
calling function is saved in a continuation, which is passed as an argument to
the function being called [App92]. In implementation terms, the continuation
is a closure containing a pointer to the code sequence corresponding to the
continuation, and the bindings of its free variables. Appel and Shao [AS92]
have adapted the ideas of caller-saved and callee-saved conventions of register
allocation to CPS. Their essential idea is to pass the values of the free
variables of the closure in registers during a call. If the called function does
not use these registers for other purposes, then these values would continue
to remain in registers during the execution of the function, and would not
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have to be spilled. It is easy to see that this assumption does not hold in
the case of recursive functions, and therefore the registers containing these
values would have to be saved and restored around each recursive call.

Another approach to register allocation for functional programs is in-
lining or unfolding . In a function definition, function calls are unfolded,
perhaps repeatedly, so that they are either eliminated (in the case of nonre-
cursive functions), or are replaced by larger stretches of straight-line code.
Functions are usually unfolded under several optimization criteria to prevent
unmanageable growth in code size. That is why unfolding of a recursive
call is usually prohibited. For instance, the subprogram inliner developed
by Davidson and Holler [DH92] has such a restriction. However, if program-
analysis techniques like control-flow analysis or binding-time analysis reveal
that the arguments of a recursive call are partially known, then the call can
be unfolded. The unfolding is done only if the unfolded instance of the call
satisfies certain size constraints. The partial evaluator mix follows such an
approach [Ses87]; Jagannathan and Wright also describe such an approach
in [JW96].

The inliners considered so far do not depend on any profile information.
The inliner developed by Chang and colleagues [CMCH92] takes profile
information into account to inline C programs. The profile information is
used to construct a weighted call graph in which weights at nodes indicate
the number of times the function is called by its callers, and weights along
arcs indicate the number of times a call is invoked during execution. Here
also inlining is done under code size constraints. If there are cycles in the call
graph, then all the functions in the cycle except one are inlined. If the cycle
involves a single function, then more than one copy of the function may be
created inside the function body.

Tail-recursion elimination is another program-transformation technique
in which a tail-recursive call is compiled as an iterative loop. In the context
of functional programs, this means that the tail-recursive call uses the same
space for its own activation record as its caller [PJ87]. While we are not
directly concerned with this issue, our method at least ensures that the result
of a tail call need not be spilled.

1.2 Our Work

To summarize, existing interprocedural register-allocation strategies do not
work well for highly recursive programs. Steenkiste and Hennessy [SH89] ob-
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serve that their interprocedural allocation removes 70% of the stack accesses
that remain after intraprocedural allocation. Further, of the remaining stack
accesses, on average, 85% are due to recursion. Even if an unlimited number
of registers were available, such spills due to recursion cannot be avoided. To
see the reason for this, consider a recursive function F , calling itself either
directly or through mutual recursion. At the point of the call to F , some
registers will be occupied. These registers have to be saved in memory so
that they can be reused in the next invocation of F . That is why such reg-
isters were spilled along backward edges in an SCC in Wall’s strategy, and
in Steenkiste and Hennessy’s method, a function spilled all the registers it
occupied before making a recursive call.

Since recursion is integral to functional programming, the problem of
reducing memory spills due to recursion deserves some attention. In [Sat96],
we have a method that reduces memory spills due to recursion monotonically
by using an increasing number of registers. But, as a consequence, the size
of the code increases exponentially. In this paper, we describe a form of
interprocedural register-allocation strategy that reduces memory spills due to
recursion by keeping multiple versions of the same function, incurring linear
code growth in the process. However, we are not able to guarantee that the
number of spills will keep on decreasing monotonically with an increase in
the number of registers. Instead, we show that, by having multiple versions,
the performance will at least be as good as the single version case, and on the
average better. The actual performance will largely depend on the runtime
behavior of the program.

It is important to note that existing methods use the results of interpro-
cedural analysis for nonrecursive calls only. Recursive calls are treated as
exceptions and are handled by spilling wherever necessary. Our method does
handle recursive procedures in a nontrivial fashion, using a simple interpro-
cedural analysis.

The organization of the paper is as follows. Section 2 extends the Aho-
Johnsson-Ullman algorithm [AJU77] to allocate registers for functional pro-
grams in a naive manner. Section 3 describes how we can reduce spills due to
recursion by keeping multiple function versions. Section 4 discusses how volt-
age graphs and some results from number theory can be used to decide the
number of meaningful versions of functions, and how certain space optimiza-
tion can be done by using properties of voltage graphs. Section 5 concludes
the paper.
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2 Basic Register Allocation for Functional
Programs

Our interprocedural register-allocation algorithm is based on a modification
of the intraprocedural register-allocation algorithm by Aho, Johnson, and
Ullman [AJU77]. We hereafter refer to this algorithm as the AJU algorithm.
This algorithm performs register allocation and code generation for expres-
sion DAGs, whose interior nodes consist only of machine operators. In this
section, we first describe the AJU algorithm, and then extend it to handle
the body of a function definition. Note that we employ the AJU algorithm
for its simplicity, and our interprocedural algorithm is not bound to it. As
we discuss later, we could consider any other suitable algorithm as well in its
place.

2.1 The Aho-Johnson-Ullman Algorithm

The algorithm assumes a fixed set of registers {R0, . . . , Rk}. It traverses an
expression DAG in a depth-first manner from the root, and annotates each
node with a register in which the value of the node is to be produced. A
node is marked as visited only if all its parents have been visited. The root
node gets the register R0, and for each interior node annotated with Ri, the
left child is annotated with Ri while the right child is annotated with Ri+1.

Code is generated in the reverse order of the visit. Code is generated for
interior nodes and for leaf nodes that are left children. No code is generated
for a leaf node that is a right child. This is a consequence of the assumed
machine model. Let Ri be the register allocated for a leaf node. If the node
is a left child, the code generated will be one of the following:

Ri ← m /* load from location m in memory*/
Ri ← literal

The code for an operator node will be one of the following:

Ri ← Ri op Rj

Ri ← Ri op m
Ri ← Ri op literal

If a leaf node is a left child of more than one node, a load instruction
is issued for each of its uses. Similarly, if an internal node is a left child of
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Figure 1: Using the AJU algorithm: order of visit and register allocation (a);
traversal of a generalized DAG (b)

more than one node, its value has to be spilled into memory, following which
it can be treated like a leaf node. Further, if an internal node gets the same
register as its left parent during register assignment, it has to be spilled after
evaluation. Spilling also occurs due to the unavailability of registers [AJU77].

The code generated for the example in Figure 1a is:

R1 ← x
R1 ← R1 − y
m← R1 /* m is some location in memory */
R1 ← R1 ∗ z
R0 ← m
R0 ← R0 + R1

R0 ← R0 + R1

2.2 Extending the AJU Algorithm for Functional Pro-
grams

Before extending the AJU algorithm, we shall clearly state the problem
framework. The language in consideration is an eager first-order functional
language. Parameter passing is done through stack. Later, we discuss the
possibility of passing parameters through registers and removing the first-
order restriction. Since our main emphasis is on recursion, we assume that
in general, no register will remain unaffected across a function call. Finally,
we assume that all functions return their results in registers.

8

The Journal of Functional and Logic Programming 1998-7



Satpathy et al. Improved Register Usage §2.3

The unit of compilation is the body of a function, which can be repre-
sented as a DAG with new node types to represent if-then-else and function
calls . For if-then-else nodes, the condition, the then, and the else branches
can produce their results in the same register, which will also be the register
for the final result of the if-then-else. We ignore any sharing between the then
and else branches of an if-then-else expression. However, each such branch
can share with the condition branch. The condition branch first evaluates
its result in the desired register, and based on its contents, the then or else
branch is selected for evaluation.

For a function f of arity k, let D1, . . . , Dk be the DAGs representing the
actual arguments of f , which may share nodes. These will be evaluated in
registers and passed to f through the stack. The code for f will load its
arguments from the stack and evaluate its result in a preassigned register,
say Rm. Each of the DAGs D1, . . . , Dk can produce its results in the same
register Rm. This is because each argument, after evaluation, will be pushed
to a stack, thereby freeing Rm. A function call creates a stack frame that
stores the arguments, and in addition has space to store those nodes in its
body for which spills may be necessary. Evaluating a call to f then amounts
to evaluating the DAG for f , assuming that its arguments are in its stack
frame.

2.3 Evaluating Function Calls

Extending the order of evaluation prescribed by the AJU algorithm to func-
tion calls may lead to an undesirable situation. During a call, some of the
registers could be holding values of intermediate computations in the body
of the caller. If the callee also needs these registers, then they have to be
spilled. As an example, consider the function definition:

F x y = (x ∗ (y ∗ 2)) + ((y ∗ 2) + G x)

Figure 1b shows the DAG, the traversal, and register allocation under
the AJU algorithm. It is easy to see that when G is called, the registers R0

and R1, containing the values of (y ∗ 2) and (x ∗ (y ∗ 2)), are live. If G uses
these registers, then they have to be saved before the call to G, and restored
later. If F calls itself many times due to mutual recursion through G, then
the number of spills could be very high. But are such spills really necessary?

Consider another approach. First evaluate G, assuming all the registers

9
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are available to it, and spill its result. Then the DAG of F is a simple
expression DAG (all the intermediate nodes are machine operators and the
leaves are in memory), and the basic AJU algorithm can be directly applied
to it. Note that we have replaced multiple spills due to the call to G by a
single spill. This forms the basis of our intraprocedural register-allocation
scheme. The key idea is that we want to partition the DAG into regions
such that each region can be independently allocated registers from a given
register set. The boundaries between these regions form the points at which
spills take place.

2.4 Partitioning the DAG

We first partition the DAG into its linear parts. The linear parts are maximal
regions of the DAG that can be evaluated using the basic AJU algorithm. A
node in a DAG is termed nonlinear if it is a function-call node or an if-then-
else node; otherwise, it is called linear . The only nonlinear nodes in a linear
part would be at its leaves. The idea is that before evaluation of a linear
part, the nonlinear nodes at its leaves would already have been evaluated,
and would reside in memory or in registers.

The algorithm for generating the partition is given in Figure 2. Essen-
tially, the algorithm puts nodes in the three branches of if-then-else into
different linear parts. It also ensures that the linear part is terminated at
function and if-then-else nodes. The variable nNumber holds the current
node number, and pNumber holds the number of the current linear part
(the current partition number). We use list L(pNumber) to collect all the
function and if-then-else nodes encountered during a depth-first-like traversal
of the linear part identified by the partition pNumber. Since the partitioning
algorithm travels each node of a DAG exactly once, its complexity is linear
in the number of nodes of the DAG.

Figure 3 shows an example DAG, and its partition into linear parts is
shown as dotted regions. Each partition (from 0 to 6) corresponds to a linear
part. It can be seen how nonlinear nodes do serve as interfaces between the
linear parts. Linear parts specified by partitions 2 and 3 are empty.

2.5 Code Generation

A naive strategy for evaluating a linear part could be as follows: first, evaluate
all the nonlinear nodes lying at the leaves of the linear part one by one, and

10
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/* DFS does a depth-first traversal on partition pNumber and stores all nonlinear
nodes (nl nodes) at the leaves of the partition in list L(pNumber) */

Procedure DFS (node, pNumber)
if (node.number > 0) or (for some parent p of node, p.number = 0)
return; /* Return if node already marked or all parents not marked */
nNumber := nNumber + 1;
node.number := nNumber; /* mark node */
node.pnumber := pNumber;
case (node)
{function: insert node in L(pNumber); /*store nl-node */
if-then-else: insert node in L(pNumber); /* store nl-node */
operator: for each child n of node do DFS(n, pNumber);
leaf: return; }

end-procedure
Procedure PARTITION(root)

for all nodes n do {n.number := 0; n.pnumber := 0;}
nNumber := 0; DFS(root, 0); /* linear part at root is partition 0 */
pold := 0; pnew := 0; /* pnew is current partition number */
for p := pold to pnew do
{if (L(p) is nonempty) /* nl nodes are present in partition p */

pnew := p + 1; /* get new partition number */
for each function node f in L(p) do

for each child n of f do
{DFS(n, pnew); /* each argument of a function */
pnew := pnew + 1;} /* will be in a distinct partition */

for each if-then-else node n in L(p) do
{let c, t, and e be the cond, then and else branch of n;

pnew := pnew + 1; DFS(t, pnew); /* each branch of if */
pnew := pnew + 1; DFS(e, pnew); /* will be in a different */
pnew := pnew + 1; DFS(c, pnew);} /* partition */

end-if}
end-procedure

Figure 2: The partitioning algorithm

spill their results; then, evaluate the rest of the linear part using the AJU
algorithm, assuming that the results of all the nonlinear nodes at the leaves
are in memory. Evaluation starts with the linear part at the root of the DAG

11
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Figure 3: Numbers at each node show traversal and partition numbers, re-
spectively

(see Figure 3), which in turn evaluates the rest of the DAG.
We now discuss the convention for spilling registers. All if-then-else and

function nodes will spill their results. Besides this, some shared nodes also
result in spills. The decision to spill a shared node whose parents all lie in
the same linear part is dictated by the basic AJU algorithm. Otherwise, the
node must necessarily be spilled.

The register-allocation and code-generation schemes described above form
a starting point for handling functional programs. The bottom-up strategy
discussed reduces the number of spills at the function-call boundaries. How-
ever, the scheme can only exploit as many registers as are needed to complete
the allocation of the function body. For the example in Figure 3, only two
registers are needed, and the number of spills will not reduce if the number
of registers is increased beyond two. In the next section, we show how we
can exploit additional registers to further reduce spills.

As mentioned earlier, our strategy is not bound to the AJU algorithm.
For evaluating a linear part, we first want the results of nonlinear nodes at its
leaves to be in memory. Once this is done, and given that a certain number
of registers are available, we evaluate the rest of the linear part by using
the AJU algorithm. However, we could use some other suitable algorithm as
well; for instance, we could use one of the algorithms by Goodman and Hsu
[GH88] to evaluate a linear part. But, since these algorithms are for pipelined
processors, we must use the number of machine cycles as the metric, rather
than the number of instructions.

12
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3 Reducing Memory Spills through Multiple-
Function Versions

We now present a scheme that can use extra registers profitably. To achieve
this, we keep multiple versions of the same function, and give a different
register assignment to each version. This will result in a reduction in spills
as compared to the original program.

The main idea is that we evaluate a linear part by first evaluating the
nonlinear nodes at its leaves in the registers, and try to keep the values in
the registers, instead of spilling them. The interior of the linear part is then
evaluated by using the basic AJU algorithm. Given a set of available registers
Nt, we partition this set into the subsets Nl and Nt − Nl. We call Nl the
set of linear registers, and Nt −Nl the set of nonlinear registers. The set Nl

contains enough registers to evaluate the interior of any of the linear parts
of the program. The other set is used to hold values of nonlinear nodes, and
it is this set that is of interest to us. We call this set M , and address its
members as R0, . . . , RM−1.

3.1 Single and Multiple Versions

Since the nonlinear nodes lying at the leaf level of a linear part can be
evaluated in any order, we evaluate them from left to right. If the root
of the linear part is evaluated in Ri, the nonlinear nodes at its leaves are
allocated the registers from Ri onward to hold their returned values. In
the process, if we cross the register with the maximum index, then, for the
remaining nonlinear nodes, allocation continues from R0 onward. Consider
the example:

F x = if (x ≤ 3) then 1 else F (x− 1) + F (x− 2) + F (x− 3)

Its DAG is shown in Figure 4. We assume there are three registers, and that
the result of the DAG is required in R0. Then, the linear part at the else
branch will be evaluated in R0, and following the idea of keeping returned
values in registers, the three calls to F are allocated registers R0, R1, and
R2 to hold their results. With a single version of each function, the only
way to do this is to evaluate the first two calls from the left, spill their
results, evaluate the third call, and then load the return values to the assigned
registers. We call the resulting method a single-version strategy (SVS). In
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the multiple-version strategy (MVS) that we are about to describe, many of
these spills are eliminated by keeping multiple versions of the same function.

Here we describe the MVS. For the present, we assume that the number
of function versions is the same as the number of registers, M . Some of these
versions may be redundant, and later we discuss ways of removing them.
The initial version of F is designated F0. Version Fi returns its result in Ri.
Further, in the DAG of F0, if a nonlinear node was a call to a function Gj

returning its result in register Rj, then in the DAG of Fi, it will be a call to
version G(j+i)mod M , which will return its result in R(j+i)mod M . The label of
the register in which an if-then-else node is evaluated is similarly modified.
We call this circular invocation.

3.2 Naive Spilling Decisions

A function version may be required to spill. Under circular invocation, a
version may appear in different contexts. But we adopt a certain convention
that allows us to determine the spills of each version statically. Our allocation
is such that the following assumption (I1) is always satisfied: a call to Fi can
assume that only registers R0 to Ri−1 are live.

So Fi, in turn, spills enough registers that the assumption holds for calls
inside its own body. Let there be four registers (M = 4), and consequently
four versions of F , named F0, F1, F2, and F3. A portion of the run-time call
tree (RTCT) for a call to F0 is shown in Figure 5. Program control takes
the else branch of each of the interior calls in the tree. In each such else
branch, only the three calls to F are shown. Calls to F0 and F1 will not spill,
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Figure 5: The RTCT for a call to F0: downward arrows and upward arrows
show places of spill and restoration; condition and then branches of if nodes
are not shown

because assumption I1 holds for the calls inside them even without spilling.
However, a call to F2, taking the else branch, will spill all the occupied
registers (R0 till R3) before the inner call to F0. Similarly, F3 will spill all
the occupied registers before the call to F0, so that assumption I1 holds for
F0. In summary, each of the calls, F2 and F3, will spill four times (equal to
M , the number of registers) when execution takes their else branches.

If calls to F2 and F3 occur less often in a RTCT, then the total number
of spills is reduced drastically. For instance, if execution always takes the
leftmost branch (shown as the enclosed region in Figure 5), then no spill
occurs. On the other hand, if execution always takes the rightmost branch,
then quite a few spills are expected. However, our method ensures that even
in the worst possible scenario, the number of spills remains less than the
spills for the same program with a single version for each function.
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3.3 Redundant Spills

The strategy just described results in many redundant spills. In Figure 5,
we specially marked two calls to F2 and a call to F3. We refer to the two
calls to F2 as parent F2 and child F2. The call to parent F2 has to spill the
occupied register set {R0, R1, R2, R3} just before the call to F0 in its body (at
position $ in the figure). The calls whose results are held by these registers are
also shown in the figure; the positions where spills take place are indicated
by downward arrows. Similarly, child F2 has to spill {R0, R1, R

′
2, R

′
3} (at

position @). Ri, R′
i, and R′′

i represent the same register holding the results
of different calls at different instants.

Both the marked calls to F2 spill the register subset {R0, R1} containing
the same values. Observe that such values are live before the call to parent
F2, and are not used until the same call to F2 returns. So the spilling of
the above register subset could be hoisted up to the position marked #; i.e.,
parent F2 will spill them as soon as control takes its else branch, and restore
them after the call returns. Then child F2 can assume that all registers are
free, and need not spill these registers. Since we made the spilling behavior
of the two calls to F2 different, they have different code: this is why we give
child F2 a ∗ superscript.

For a ∗-superscripted call, assumption (I2) holds: a ∗-superscripted call
can assume that all the registers are free.

If we follow the convention that the result of a ∗-superscripted call is
spilled, then F3 at position 3 can also be given a ∗ superscript. Further, notice
that by doing so the spilling obligations of parent F2 ({R0, R1, R2, R3}) are
met. Similarly, the spilling obligations of child F2 (which are now {R′

2, R
′
3})

are met by ∗ superscripting the calls to F2 and F3 under it. The complete
spilling behavior is shown in Figure 6. Each call in the RTCT satisfies as-
sumption I1 or I2, and meets its spilling obligations.

We now give rules for ∗ superscripts.

1. If Fj occurs in the body of Fi, and Fi and Fj both spill under the naive
strategy, then Fj will receive a ∗ superscript. This ensures that Fj does
not spill the registers already spilled by Fi.

2. If Fj occurs in the body of Fi
∗ and is a candidate for spilling under the

naive strategy, it will receive a ∗ superscript.

3. Let n∗ stand for an ∗-superscripted function call or if node (see below).

16

The Journal of Functional and Logic Programming 1998-7



Satpathy et al. Improved Register Usage §3.3

F2 F3

F2 F3 F0 F3 F0 F1

F0

F2

R2 R3 R3

R 2 R3

R0 R1

0
F

F11

F3F32

F1
F 3F 3

R3

R0 R2

if

else

if

else

if

else

* * *

* *

0F

F1 F 2

F0
*

else

if

else

if

if

else

Figure 6: Complete spilling behavior for the example

If Fj and n∗ occur at the leaf level of the same linear part and Fj is
evaluated before n∗, then Fj receives an ∗ superscript.

Also observe that under our new scheme we need not spill the results of
all if-then-else nodes. To distinguish the if-then-else nodes whose results need
be spilled, we give them ∗ superscripts. The rules for doing so are:

4. If ifj and n∗ occur at the leaf level of the same linear part and ifj is
evaluated before n∗, then ifj receives an ∗ superscript.

5. If ifj is evaluated in the register with the maximum index RM−1 (i.e.,
j = M−1), and it is not the last in a sequence of nonlinear nodes lying
at the leaf level of a linear part, it receives an ∗ superscript.

As an illustration of the rules above and the consequent spilling behavior,
consider the example:

F x = ( if() then () else (F () + F () + if () + F ()) ) + if () + G()

G x = if () then () else (G() + G() + G())
17

The Journal of Functional and Logic Programming 1998-7



Satpathy et al. Improved Register Usage §3.3

G1

G3G1 G2
F*

3
F*

2F*
0

R 3

R 
3

R 0 R 1

R 2R 0
__

if 0if *3
if 1

if *
1

+

+

+

A
B

C
+

+

3

+

+

F

else 

else 

Figure 7: An example illustrating ∗-superscript rules

Parts of the functions not relevant to our discussion have been left blank
within parentheses. Assume that there are four versions (M = 4) of each
function. We show the F3 and G1 versions of the functions in Figure 7.
Consider the sequence of nonlinear nodes {F3, F0, if1, F2} lying at the leaf
level of linear part A. Calls F3 and F2 are ∗ superscripted owing to rule 1.
This is because F3, their caller, is a candidate for spilling. Moreover, F0 and
if1 are ∗ superscripted because of rules 3 and 4. None of the ∗-superscript
rules apply for the sequence {G1, G2, G3} lying at the leaf level of B. Finally,
the node if3 lying at the leaf level of C is ∗ superscripted because of rule 5.
Notice that, unlike in the SVS, the result of if0 does not have to be spilled.

There is one situation where the result of an ∗-superscripted call (or an
∗-superscripted if-then-else node) will not be spilled. This is illustrated by
the call F2

∗ in Figure 7. Since it is the last nonlinear node lying at the leaf
level of A, its evaluation can fall through the evaluation of the corresponding
linear part.

For both the MVS and SVS, we now associate each spill with some func-
tion call. Since the number of function calls in both strategies remains the
same, it is easier to compare the total number of spills. The simple rule for
doing this is the following: with a call to a function F , we associate the spills
inside its body. Since each spill occurs in the body of some function, the
above rule accounts for all spills.

The method still has certain redundant spills. In Figure 6, assume that
the two calls to F1 marked 1 and 2 and the F3s called by them all take their
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else branches during execution. Then, both F3s will spill registers R0, R1,
and R2, in which the spilling of R0 is clearly redundant. To avoid such
redundancy, we first have to detect the context of such call occurrences, and
then introduce yet more versions of the same function. Therefore, we have
decided to ignore such duplication in spills.

Redundant spills also occur due to sibling calls in the same function
definition spilling the same registers. For example, in Figure 6, the calls
F2 and F3, called within the body of F1, will spill {R0, R1} and {R0, R1, R2}
when control takes their else branches. In both sets, registers R0 and R1

contain the same values. To avoid such spills, we have to precompute in
the body of the caller F1 whether the calls to F2 and F3 will take their else
branches and, in such a situation, spill R0 and R1 there itself. Though it is
feasible to do so, the approach is quite complex and may result in exponential
growth in the code size [Sat96]. So we choose to ignore such spills also.

Note that each function has a number of versions equal to the number
of registers used (the versions without superscripts) plus a number of ∗-
superscripted versions. So far we have assumed that the number of registers
used is M , the entire set of available registers. However, this may not al-
ways be profitable, since beyond a certain point, duplication in register spills
will dominate, and the number of spills may even exceed the spills in the
original program. We illustrate this by referring to Example 6 in Appendix
A. Figure 8 depicts the complete RTCT for the call to F0 (11) when we use
five nonlinear registers (R0–R4). Under the single-version case, the number
of spills is seven (two spills each by F0, A2, and A3, and one by B4). But
observe that under the MVS, calls A3 and B4 will spill five registers each,
out of which three registers will have the same values. The positions where
these spills take place are also indicated in the figure.

Therefore, it might not be profitable to use the whole set of available
registers, M , but a subset (say N registers) to decide on the number of
versions. We will now describe an algorithm for choosing a value of N to
guarantee that the number of spills under the MVS will always be less than
the number under the SVS.

3.4 Critical Spilling Regions (CSRs)

Consider a program whose call graph is an SCC. Observe that the RTCT
for any program is the same for both the MVS and SVS modulo version
renaming. Under the MVS, spills take place only at some of the nonlinear
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Figure 8: Duplication in spills dominating an RTCT; downward arrows show
where spills take place under the MVS

nodes. Out of these nodes, only some have ∗ superscripts. As we show
in the proof of Theorem 1, the ∗-superscripted nodes spill less than or an
equal number of times compared to the corresponding nodes under the SVS.
Therefore, around those calls in the RTCT, we demarcate regions that spill
and are without ∗ superscripts. We call such a region a CSR. Now the
number of versions N is chosen so that the number of spills within the CSRs
never exceeds the number of spills in the corresponding regions of the RTCT
under the SVS.

Formally, a CSR is a region in an RTCT that encloses adjacent function-
call nodes according to the following rules:

1. Let Fi be a node in the RTCT with register index i and without an ∗
superscript. Make Fi the root of a CSR if Fi does not spill but at least
one of its children spills.

2. Include in the same CSR those nodes with register index j, say Gj,
such that:
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i. i < j,

ii. Fi calls Gj, and

iii. Gj is not the root of another CSR.

We now discuss the construction of CSRs through the following example
program:

F0 x = if (x ≤ 3) then 1 else F0(x− 1) + F1(x− 2) + F2(x− 3)

Figure 9 shows a portion of an RTCT with a call to FN−5 at the root.
Assume that program control takes the else branch of each of the interior call
nodes in the figure. For constructing CSRs, observe that only nodes FN−4

and FN−3 satisfy rule i . We therefore have two types of CSRs: CSR1 with
FN−4 as the root, and CSR2 with FN−3 as the root. Note that each FN−4 in
an RTCT will be the root of a CSR of type CSR1, and each FN−3 is made
the root of a CSR of type CSR2. Following rule ii, FN−2 is added to CSR1

(see Figure 9), and both FN−2 and FN−1 are added to CSR2.
Let us now justify the intuition behind the construction of CSRs by refer-

ring to CSR2 in Figure 9. For constructing a CSR, we first identify a sequence
of unsuperscripted sibling calls that do spill. In this case, they are FN−2 and
FN−1. To start, we include these calls in the CSR. Inside a CSR, we want
the number of spills under an MVS to be smaller than under an SVS. Since
under an MVS the number of spills in the CSR consisting only of FN−2 and
FN−1 could be high, we offset these spills by including some unsuperscripted
calls, such as FN−3, in the same CSR. This in effect increases the number
of versions for which an MVS would be more profitable than an SVS. Note
that we cannot include FN−5, because it does not appear in every context in
which the sequences FN−2 and FN−1 appear. Further, we cannot include the
sibling FN−3, because it is the root of another CSR. So, nothing else can be
added to CSR2.

Theorem 1 Consider a program whose call graph consists of a single SCC.
If, for each CSR, the number of spills under an MVS does not exceed the
number of spills under an SVS, then for any RTCT of the program, the total
number of spills under an MVS will not exceed the number of spills under an
SVS.

Proof of Theorem 1 Apart from the CSRs, the ∗-superscripted nodes are
the other places where there will be spills under an MVS. Clearly, the spills
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Figure 9: CSR1 and CSR2 are the two CSRs of function F

due to ∗-superscripted if-then-else nodes are matched by their counterparts
under an SVS. Consider an ∗-superscripted call. Observe that the only spills
associated with such a call are (1) spills of results of ∗-superscripted function
calls in its body, and (2) spills of results of ∗-superscripted if-then-else nodes
in its body. These are also matched by their counterparts under an SVS.

Proof of Theorem 1 2

To see how the above result can be used to find a profitable number
of versions, consider the same function F once again. Let the number of
registers for which the performance of an MVS is guaranteed to be better
than an SVS be N . From the discussion above, in addition to the N versions,
F0, . . . , FN−1, there are two additional versions, (F ∗

N−2 and F ∗
N−1). According

to our spilling conventions, versions FN−2 and FN−1 will spill, and versions
Fi for i < N − 2 will not spill.

Consider the two CSRs, CSR1 and CSR2, of function F in Figure 9.
Tables 1 and 2 compare the number of spills under MVS and SVS for these
two CSRs. The rows show various cases, depending on whether FN−1 and
FN−2 take their then or else branches. The idea is to analyze every possible
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FN−2 takes Number of Spills Number of Spills
Branch in an SVS in an MVS
then 2 0
else 4 N

Table 1: Number of Spills for CSR1

FN−2 takes FN−1 takes Number of Spills Number of Spills
Branch Branch in an SVS in an MVS
then then 2 0
then else 4 N
else then 4 N
else else 6 2N

Table 2: Number of Spills for CSR2

control path in a CSR, calculate the number of spills in terms of the variable
N in both the cases, and obtain a constraint involving N . Analysis of each
CSR gives rise to one such constraint, and the final value of N is obtained
from all such constraints.

Analysis of Table 1 shows that for N ≤ 4, spills under an MVS will not
exceed that under an SVS in any CSR of the kind CSR1. Table 2 shows a
similar behavior for CSR2 when N ≤ 3. In conclusion, if N ≤ 3, then the
number of spills under an MVS will never exceed that under an SVS in either
of the two CSRs. We can have up to three unsuperscripted versions of F .
However, to ensure that the number of spills is less than the same in an SVS,
we should have N < 3 (ignoring the trivial case when the number of spills
in both cases is zero). In general, if CSR analysis yields a constraint N ≤ t,
it means that for N < t the number of spills in any CSR under an MVS will
be strictly less than the number of spills in the same region under an SVS.
However, when N = t, then the number of spills in both the strategies could
be the same. Because we gain, regardless, at other places in the RTCT, we
recommend using t registers.

So far we have discussed how to bring down the number of spills in case of
a self-recursive function like F above. We first identify the CSRs, and from
their analysis, we find the value of N . The method of determining the value
of N for a general SCC is analogous: we take each individual function in the

23

The Journal of Functional and Logic Programming 1998-7



Satpathy et al. Improved Register Usage §3.6

SCC and determine the CSRs for it. Each CSR gives rise to a constraint
involving N ; we determine the final value of N from this set of constraints.
Since all the constraints are of the form a ∗N < b, we simply take bb/ac for
each such inequation, and choose the minimum value of N .

3.5 Handling General Call Graphs

We have considered call graphs consisting of a single SCC. We now con-
sider call graphs which, in general, have more than one SCC, in addition to
nonrecursive calls. For handling such a call graph, Steenkiste and Hennessy’s
method [SH89] involves replacing each SCC by a single compound node, and
applying the bottom-up allocation to the resulting DAG. Our approach is
similar, but with two important differences. First, our bottom-up allocator
allocates registers from the set Nt −Nl to the nodes in the DAG. The same
set Nl is used to evaluate the linear parts of each node in the DAG. Second,
the number of registers allocated to an SCC is the number N that we obtain
for the SCC from the analysis discussed above. It is important to note that
if an SCC is allocated registers Ri to Rj, then a function F in the SCC will
have the versions Fi to Fj, with Fi playing the role of F0 in the previous
discussions.

Figure 10 shows a call graph with three SCCs. A and B are the two
nonrecursive calls requiring one and two registers, respectively. The values
of N obtained for the SCCs are as shown in the figure. The figure also shows
the bottom-up allocation. Note that if a function in one SCC calls a function
in another SCC, then no spill occurs at the call boundary. This is because
disjoint nonlinear register sets are given to the two SCCs. SCC1 is given
registers R5 through R7, and its functions have versions indexed by 5, 6, and
7. Let a function F in SCC1 call a function G in SCC2. This translates to a
call to the version G2, which, in SCC2, plays the role of G0.

In case of a shortage of registers, we adopt Steenkiste and Hennessy’s
strategy of spilling some registers, and continue with the bottom-up alloca-
tion.

3.6 Experimental Results

We now present the results of our experiments, which demonstrate the effec-
tiveness of our method. Tables 3–7 in Appendix B tabulate the number of
spills for Examples 1–5 in Appendix A. In each table, the column under the
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Figure 10: Bottom-up allocation for a generalized call graph

heading “Incremental Strategy” shows the number of spills when the program
is evaluated following the approach by Steenkiste and Hennessy [SH89]. Since
the choice of intraprocedural allocation algorithm in their method is unspec-
ified, we used the AJU algorithm. Subsequent columns show the number
of spills when the same program is evaluated under our bottom-up strategy,
using single and multiple versions. The columns titled “r Registers” indicate
that r nonlinear registers were used to decide on the number of versions. If
A is a function in an SCC, and r is the number of nonlinear registers used,
then the number of versions of A is r plus the number of ∗-superscripted
versions for A. We divided the number of spills into two categories. The first
category of spills is due to evaluation of nonlinear nodes, and the second to
evaluation of the interior of linear parts. The second category of spills is the
same for both the SVS and the MVS. For purposes of comparison, they have
been ignored.

The function S(k, n) in Example 1 is used in solving the prefix problem
using Ladner and Fischer’s method [LF80]. Example 2 is the map operation
on binary trees. Since we are considering a first-order language, we take the
first-order version of map. Example 3 is for transposing a square matrix
when it is represented as a power list [Mis94]. Example 4 is an inefficient
version of quicksort . The last example shows a case of mutual recursion. Note
that the Fibonacci function falls in the category of Example 1. Many of the
operations on binary trees and k-ary trees (for instance, unifying two k-ary
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trees) fall in the category of Example 2. For k-ary trees, our CSR analysis
gives larger values of N . Example 3 is like an operation on a 4-ary tree. For
this example, CSR analysis finds the value of N to be 4. For quicksort, the
value of N is 2, and for Example 4, the value of N is 5.

Figure 11 shows the graphical representations of the experimental results.
Consider the graph for the quicksort example. For each case, we take a list of
size 2,000. Notice that under each of the multiple-version cases, the program
is executed without incurring any spills. This is because in the RTCT, the
versions with higher indices (versions that spill) never carry control to those
branches of the function bodies where spills take place. When the list is
sorted in reverse order, we have the worst-case behavior. Here, under an
incremental strategy, the number of spills is 4,000; the same under the single-
version case is 2,000. Under the multiple-version strategy, we get marginally
better behavior. The reason is that the RTCT is dominated by versions that
spill. The figure in parentheses with each line shows the number of spills
under the incremental strategy.

We mentioned earlier that the program behavior is mostly input depen-
dent. Observe this from the graphs for various examples. Note that as long
as the number of versions remains within N , we get better performance than
with the single-version program.

3.7 Discussion

3.7.1 Effect on Code Growth

Keeping multiple versions results in a linear increase in code size that may
affect the cache behavior. Studies conducted by Davidson and Holler [DH92]
in the context of subprogram inlining reveal that code growth does not neces-
sarily make the cache behavior worse. In their benchmark programs, though
code size increased due to inlining by factors ranging from 3 to 8, they ob-
served marginally better cache and paging behavior. Their reason is that in
effect, a lesser number of instructions got executed while executing inlined
programs. Moreover, inlining altered the locality pattern, which sometimes
became better and sometimes became worse than the locality pattern of the
original program.

We feel that our method does not result in degradation of cache behavior.
The CSR analysis on various programs indicates that the number of function
versions under the MVS will rarely go beyond a factor of 8. In the next

26

The Journal of Functional and Logic Programming 1998-7



Satpathy et al. Improved Register Usage §3.7.2

N = 2

1000

2000

3000

4000

5000

6000

7000

2 31 4 5 6

(7894)

(4878)

(2522)

(12774)

No. of versions

No. of  spills

Prefix - sum  (Example 1)

N = 5
35000

25000

15000

6000

4000
3000

1 7 8 9 1065

50
30
10

No. of  spills

(Example  5)

(40710)

(7938)

(61)

No. of versions
432

N = 2

3

2000

1500

1000

500

3 61 2 4 5

No. of  spills

No. of versions

Quicksort  (Example  4)

(4000)

(3000)

(3400)

(4000)

list  already  sorted

sorted list reversed

N = 4

5000

250

15
150

5
0

1000

1 2 4 5 6

No. of  spills

Matrix  Transpose  (Example  3)

(4095)

(1023)

(15)

(255)

No. of versions

3

Figure 11: Graphical representation of the experimental results

section, we discuss ways of decreasing the number of versions even further
without increasing spills. In addition, we can improve cache behavior by
using cache prefetching techniques. When a function version is called, we
know the versions likely to be called next; hence, they can be prefetched.
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Figure 12: Passing parameters in registers

3.7.2 Passing Parameters in Registers

All along, we have assumed that parameter passing is via stack. When a
function version Fi is called, registers from Ri onward are free; therefore, its
parameters could be prepared in Ri, R(i+1)mod N , . . . , R(i+k−1)mod N , where k
is the arity of F . If (i + k− 1) crosses the value of N , then there are several
design choices. One strategy is to evaluate via stack those parameters whose
register indices cross the value N . Once the parameters of Fi are in evaluated
form, the DAG of Fi should be evaluated so that the result is available in Ri.
We illustrate this through an example. Let Figure 12 represent the DAG of
version Fi whose three arguments are available in Ri, Ri+1, and Ri+2. The
call to G gets the register assignment i, and hence its two parameters are also
to be prepared in Ri and Ri+1. The challenge is then to use the parameters
of Fi in registers as much as possible while computing the parameter values
of Gi. When it is no longer possible to retain the parameter values of Fi in
registers, they have to be spilled into memory, and further references to them
will be memory references.

Table 8 in Appendix B shows the number of register and memory oper-
ations for the Fibonacci function, when parameters are passed in registers.
The table shows clearly that the improved performance of the MVS over the
SVS is not affected even when arguments are passed in registers. We are
currently investigating other design choices so that programs will execute
with a minimal number of register and memory operations.
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3.7.3 Complexity of the MVS

Our algorithm involves (1) finding the SCCs in a call graph, (2) doing CSR
analysis, and (3) finding the number of meaningful versions. Algorithms for
finding SCCs and obtaining a spanning tree in a graph (which are required
by point 3, and are described in the next section) are of linear complexity
[vL90]. For doing analysis on a CSR, we need to examine all control-flow
paths inside the CSR. This can be exponential in the number of if-then-else
nodes inside the CSR, but in practice, the number of such if-then-else nodes
will be few and the number of control paths hardly exceeds the number 24

or 25. The remaining steps in our algorithm are of linear complexity.

4 Finding the Number of Meaningful Ver-
sions

Given an SCC, we have a method of determining N , the number of registers
we can profitably use. Each function is assumed to have N versions in addi-
tion to some versions with ∗ superscripts. But some of the versions may not
be meaningful, in the sense that they will never be called in the course of any
execution. We want to avoid creating such versions to prevent unnecessary
growth in code size. So, what we are interested in is the number of mean-
ingful versions for each function. Further, we show that by manipulating the
evaluation order (choosing an order other than left-to-right), it is possible to
reduce the number of versions even further without introducing extra spills.

Figure 13 illustrates the notion of meaningful versions. In the figure, F
and G are two functions that constitute an SCC. Versions F0 and G1 are
as shown in the figure. Assume that the main program calls F only, and G,
in turn, is called only by F or G itself. Also assume that to minimize the
number of spills, we decide to keep four versions of each function. It is easy
to see that under the circular invocation strategy, the versions F1, F3, G0,
and G2 will never be called. So the only meaningful versions are F0, F2, G1,
and G3.

We define the distance of a function call node, with respect to its caller, as
the register number that it gets while assuming that the root of the associated
DAG gets register zero (the caller returns its result in R0). In Figure 4, the
three calls to F are at distances 0, 1, and 2 with respect to the caller. We
can determine the distance of each called function in a program by inspecting
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Figure 13: Meaningful versions

the DAGs of the function bodies.

4.1 The Number of Meaningful Versions: Analysis

A distinct function version implies a distinct register assignment to it. Func-
tion version Fi is said to have register assignment i. To find the number of
meaningful versions, we proceed as follows. First, we show how to determine
the number of distinct register assignments for a single self-recursive func-
tion. This is done using Lemmas 1 and 2. Then, using voltage graphs, we
show how to convert a general SCC to the case of an SCC consisting of a
single self-recursive function, so that the number of register assignments to
the function remains unchanged under the transformation.

We first handle the case of a function with a single recursive call to itself.

Lemma 1 Let N ≥ 1 be the number of registers. Let F be a recursive
function; the only call to F lies at a distance d in the body of F . Then the
number of distinct register assignments to F is N/gcd(N, d).

Proof of Lemma 1 Assume an initial assignment of 0 to F . Then S1, the
set of possible assignments to F , is given by {i ∗ d mod N | i ≥ 0}. This set
is the same as S2 = {(j ∗ gcd(N, d)) mod N | j ≥ 0}. It is obvious that any
element of S1 is in S2. Let us take an element k = (j0 ∗ gcd(N, d)) mod N
in S2. Then, from the properties of gcd [Mig92], k = j0(x N + y d) mod N ,
where x and y are integers. From this we can find a non-negative value of i
such that k = i ∗ d mod N , and the number of elements in S2 is N/gcd(N, d).

Proof of Lemma 1 2

This result can be generalized to the following lemma.

Lemma 2 Let F be a recursive function with n calls to itself at distances
d1, d2, . . . , dn. Then the number of distinct assignments to F is given by
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N/gcd(N, d1, . . . , dn), and the assignments (assuming an initial assignment
of zero) can be generated from {k ∗ gcd(N, d1, . . . , dn) | k ≥ 0}.

Proof of Lemma 2 Assuming an initial assignment of zero to F , the pos-
sible calls to F can lie at distances

{(i1d1 + . . . + indn) mod N | i1, . . . , in ≥ 0}

where i1, . . . , in are integers. This is the same as the set

{k ∗ gcd(N, d1, d2, . . . , dn) mod N | k ≥ 0}

whose cardinality is N/gcd(N, d1, . . . , dn). The equality of both sets can be
proved as in the previous lemma.

Proof of Lemma 2 2

Lemma 3 Every member of an SCC in a call graph receives the same number
of assignments.

Proof of Lemma 3 Consider any cycle in an SCC. Let the nodes
F1, F2, . . . , Fm constituting the cycle (m ≥ 1) have k1, k2, . . . , km number
of assignments, respectively. Nodes Fi and Fi+1 are the adjacent nodes for
i < m, and F1 is the adjacent node of Fm. Let F1 call F2 at distance d12.
Then, F2 has a number of assignments that is at least as many as F1; i.e.,
k1 ≤ k2. This is so because the k1 assignments to F2 can simply be obtained
by adding (modulo N) d12 to each of the assignments to F1. Following the
same argument, we have k1 ≤ k2 ≤ k3 . . . km−1 ≤ km ≤ k1, which implies
k1 = k2 = k3 . . . km−1 = km.

Proof of Lemma 3 2

Clearly, it is enough to concentrate on any one node of the SCC. For find-
ing the number of assignments to such a reference node, we use voltage
graphs [GT87].
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Figure 14: A voltage graph (a); and a bouquet of circles (b)

4.2 Voltage Graphs

Let G be a directed graph. Each edge in G has a plus and a minus direction
(the direction of the directed edge and its reverse, respectively). Let A be a
finite group. Let a function α map the plus-directed edges to the elements
in A. Such a function is called the voltage assignment on G, and the pair
〈G, α〉 is called a voltage graph [GT87]. The values of α are called the
voltages, and A is called the voltage group. The original graph G is called
the base graph of the voltage graph. If α(e+) = v, then α(e−), the voltage
associated with the minus-directed edge, is the group inverse of v. Figure 14a
shows a voltage graph with 〈{0, 1, 2, 3, 4}, +(mod 5)〉 as the voltage group.
Edge ab is a plus-directed edge, and ba is a minus-directed edge. α(ab) = 1,
and α(ba) = 1−1 = 4. A walk in a voltage graph is a sequence of edges
e1, e2, . . . , en, where edges ei and ei+1 (1 ≤ i < n) have an endpoint in
common. The walk is said to be of length n. Each edge ei has either a + or
− sign. A walk is closed if its starting and ending vertices are the same. A
directed closed walk is a closed walk in which there is no edge with a minus
direction.

The net voltage on a walk, W = eσ1
1 , . . . , eσn

n (where σi = + or−), is
the product (under the group operation) α(eσ1

1 ) . . . α(eσn
n ) of voltages on the

edges of W . A closed walk starting and ending at vertex u is called a u-
based closed walk . Gross and Alpert [GT87] have shown that the set of net
voltages occurring on all the u-based closed walks forms a subgroup of the
voltage group. This is called the local voltage group at u, and is denoted by
A(u). In Figure 14a, the sequence of edges 〈bc, cd, db〉 is a b-based closed
walk. The net voltage on this walk is (3 + 1 + 0)(mod 5) = 4, and A(b) is
the same as the voltage group.

32

The Journal of Functional and Logic Programming 1998-7



Satpathy et al. Improved Register Usage §4.3

A graph that has exactly one node and has one or more self-loops is
called a bouquet of circles . If the base graph of a voltage graph is a bouquet
of circles, then the local voltage group at the node is simply the subgroup gen-
erated by the voltages on all the loops [GT87]. Figure 14b shows a bouquet of
circles as a voltage graph with 〈{0, 1, 2, 3, 4}, +(mod 5)〉 as the voltage group.
The local voltage group at the node is the subgroup generated by voltages
1, 2, and 4; and it is the same as the voltage group. When the base graph is
not a bouquet of circles, Gross and Tucker suggest the following procedure to
transform it to a bouquet of circles. The transformation is done with respect
to any reference node u, and it has been shown that A(u) remains unchanged
under the transformation.
The steps of Gross and Tucker’s procedure are as follow:

Step 1. Select an arbitrary spanning tree T ; e.g., with some reference node
(say u) as the root.

Step 2. Compute the T -potential for all nodes v in G. For each v ∈ G there
is a unique path in the tree from u to v. α(v, T ), the T -potential of a
vertex v, is defined as the net voltage in the path from u to v.

Step 3. Compute T -voltages for all edges e in G. If v and w are the initial
and terminal vertices of e+, then the T -voltage, αT (e), is defined as the
product α(v, T ).α(e).α(w, T )−1.

Step 4. If there is an edge with group identity as the T -voltage, then the
two vertices connected by this edge have the same potential. Merge
the endpoints of all such edges, and remove such edges from the graph.
The transformed graph is then a bouquet of circles.

4.3 Voltage Graphs for Finding the Meaningful Ver-
sions

We claim that Gross and Tucker’s algorithm can be adapted to find the mean-
ingful number of versions of each function in an SCC. The correspondence
is as follows. If N is the number of registers, then < {0, 1, . . . , N − 1}, +N >
is our voltage group. +N , i.e., addition modulo N , is our group operation,
and an SCC in a call graph is our base graph. The distances in the SCC are
the voltage assignments; however, the only meaningful walks in our case are
directed walks. We show that if any SCC can be converted into a bouquet
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of circles by the method of Gross and Tucker, the set of net voltages on all
directed u-based closed walks (u is the reference node) remain unchanged.
In fact, the elements of this set are the meaningful versions for the function
represented by u (assuming the existence of version number zero). Then, by
using Lemma 2, we can calculate the meaningful versions for the function.

It may seem that we cannot directly use the procedure described above be-
cause it allows walks over minus-directed edges, whereas we are constrained
to consider walks only over plus-directed edges. We claim that since the
graphs considered for our purpose are always strongly connected, the above
procedure is still applicable.

Theorem 2 Let G be an SCC, and α be some voltage assignment to G. Let T
be a directed spanning tree. Following the procedure due to Gross and Tucker,
let the graph be transformed to a bouquet of circles with u as the reference
node. Then the set of net voltages at u due to all the u-based directed closed
walks remains unchanged under the transformation.

Proof of Theorem 2 Since the choice of a spanning tree in the procedure
is arbitrary, we can choose a directed spanning tree (while traversing from
the root, we never encounter a reverse edge). After assigning T -voltages to
edges, the local voltage group at u remains unchanged [GT87], which means
that the set of net voltages on all the u-based closed walks at node u remains
unchanged. This also implies that the set of net voltages on all the u-based
directed closed walks remains unchanged. In their transformation, Gross and
Tucker are able to merge the endpoints of an edge with group identity as the
voltage, because the local voltage groups at such endpoints are the same.
The only thing we then must show is that we too can merge the endpoints
of an edge having zero (the group identity) T -voltage.

In Figure 15, the directed edge e from v to w has voltage zero. Since the
graph is an SCC, there must be a directed path from w to v with net voltage,
say t. Let V and W be the sets of net voltages of all directed closed walks at
v and w, respectively. Let w1 ∈ W . Consider a v-based directed closed walk
as follows. Start from v; go to w along e; traverse all edges of the w-based
closed walk that resulted in the net voltage of w1; and then come back to v
along the same set of edges that make a net voltage of t, mentioned above.
Since t may not be equal to zero, traverse the directed cyclic path comprising
e and the path having a net voltage of t, N − 1 more times to finally reach
v. The directed closed walk so described has a net voltage of w1. It implies
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Figure 15: In an SCC, w and v have identical register assignments

that w1 ∈ V . We can show, similarly, that if v1 ∈ V then v1 ∈ W ; therefore
V = W . Thus we can merge the vertices v and w and remove the edge e
without affecting the net voltages at other points in the graph.

Proof of Theorem 2 2

After merging the endpoints of all edges with zero voltage, the call graph
is a bouquet of circles. As discussed earlier, by using Lemmas 2 and 3, what
we find is the number of versions for each function in the SCC. But we are
required to find the number of actual assignments to each function. For this
we take a function, say F , in the SCC as the reference node. The set of
register assignments to F , SF , is obtained using the procedure described (it
is assumed that F has an assignment of zero). Then, take any other function,
say G, in the SCC. Find a directed path from F to G and let the sum of
distances in the path be dFG. The set of register assignments to G is given
by {d +N dFG | d ∈ SF}.

4.3.1 An Example

Figure 16a shows the SCC involving four functions F, G, H, and I, whose
definitions are given in Example 7 in Appendix A. This SCC is the base
graph of the voltage graph that we construct. The numbers along the edges
are the distances between the functions in the SCC. These distances could
be obtained by inspecting the DAGs of the functions in the SCC. Let us
assume that we have 16 registers to decide on the number of versions; i.e.,
the value of N is 16. We take < {0, 1, . . . , 15}, +16 > as our voltage group.
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Figure 16: Transformation of an SCC to a bouquet of circles

To apply the algorithm of Gross and Tucker, we select F as our reference
node. In Figure 16b, the bold lines show the chosen directed spanning tree
T, with F as the root. The T -potentials of the nodes and the T -voltages
of the edges of the SCC are as shown in the figure. Figure 16c shows the
corresponding bouquet of circles.

By Lemma 2, the number of meaningful versions for F is 8, and by
Lemma 3, the number of meaningful versions for functions G, H, and I
is also 8. Without any analysis we would have taken 16 versions for each of
the functions.

4.4 Voltage-Graph-Based Optimizations

Viewing an SCC as a voltage graph allows us to do other optimizations. If
the distances along the n self-loops of a bouquet are r1, r2, . . . , rn (called
generators), then the number of assignments to the reference node is q =
N/gcd(N, r1, . . . , rn). This number q may be large, and we would prefer a
smaller number. In the expression for q, by changing a certain distance, say
ri to r′

i, we may reduce its value. But what is the implication? Observe that
each self-loop in the bouquet uniquely corresponds to some directed edge in
the original SCC. In fact, all of our analysis remains valid if we do the same
modification to the corresponding edge in the original SCC.
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Lemma 4 Let an SCC in a call graph be transformed to a bouquet of circles.
Modifying a generator by ∆ in the bouquet amounts to modifying the distance
of the corresponding edge in the original SCC by ∆ (∆ ∈ A, the voltage
group).

Proof of Lemma 4 No self-loop in the bouquet corresponds to any edge in
the spanning tree T , e.g., which T -potentials and T -voltages are calculated.
So we are not modifying the T -potentials. Let e+ be the edge from vertex v
to w in the call graph which is not in T , and α(e+) be its assigned voltage.
The T -potentials of v and w are α(v, T ) and α(w, T ), respectively. This edge
will become a self-loop in the bouquet of circles, and its transformed voltage
will be a generator that is α(v, T ).α(e+).α(w, T )−1. Our voltage group is
({0, 1, . . . , (N − 1)}, +N). It is also an abelian group. Adding voltage ∆ to
this generator amounts to

α(v, T ).α(e+).α(w, T )−1.∆ i.e.,

α(v, T ).(α(e+).∆).α(w, T )−1

Proof of Lemma 4 2

For the example in Figure 16, we have seen that the number of meaningful
versions for each member of the SCC is 8 when the number of registers is
16. If we change the voltage of one self-loop from 14 to 16 (i.e., to 0 with
∆ = 2) and of another from 2 to 0 (∆ = 14), then the number of meaningful
versions for F (and hence for each other member of the SCC) will be 4.
For this we must change the distance in the SCC between F to G from 0
to 2 (0 +16 2 = 2) and the distance for the self-loop of F from 2 to 0
(2 +16 14 = 0). This amounts to just switching the evaluation order of calls
G and F in the body of F , and as we have discussed earlier, this change is
safe.

Based on the last lemma, we now define an algorithm to find the values
of ∆ so that the number of versions is reduced. Essentially, we find a new
evaluation order of the function calls inside a function DAG. Let us refer to
the original SCC, in which edges are labeled with distances, as the OSCC
(Figure 16a). After choosing a spanning tree T in the SCC, the nodes and
edges are labeled with T -potentials and T -voltages. Let us call it TSCC
(Figure 16b). The TSCC is then transformed to a bouquet (Figure 16c).
Normally we call the voltages along the edges in the bouquet generators,
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Let r1, r2, . . . , rq be the generators in the bouquet.
g = gcd(N, r1, . . . , rq), and
n1, . . . , np are prime factors of N/g.

Step 1
Select the next ni (i = 1, . . . , p)
If i > p return-message(failure in finding a new evaluation order);
Step 2
For each function node F in TSCC do

Let the generators of F be r1, . . . , rt;
Find the corresponding distances d1, . . . , dt in OSCC;
Select a permutation of d1, . . . , dt such that when
distances d1, . . . , dt are replaced by the permutation,
each of the new generators r′

1, . . . , r
′
t in TSCC is divisible by g ∗ ni;

/* r′, . . . , r′
t are the new generators calculated, e.g., the permutation */

if such a permutation does not exist goto Step 1.
endfor
Step 3
Let the permutations replace the corresponding distances in the OSCC;
The present distances in the OSCC define the new evaluation order.

Figure 17: Procedure for finding an efficient evaluation order

but we now refer to the voltages along all edges in the TSCC, excepting the
ones in the spanning tree T , as generators. We also refer to the voltages
along those edges in the TSCC, which originate from node F and are not in
the spanning tree, as the generators of F . With this background, Figure 17
describes the algorithm.

In Figure 5, g = 2 and the prime factors of N/g are n1 = 2, n2 = 2, and
n3 = 2. In the bouquet, the generators of F are 2 and 14. The corresponding
distances of such generators in the OSCC are 2 and 0. When we take the
permutation [0, 2] of such distances and calculate the new generators of F
in the bouquet, they are 4 and 0, respectively. Both are divisible by n1 ∗
g = 4; so a desired permutation exists. Similarly for nodes G, H, and I,
we can find identity permutations as the desired permutations. Therefore
[0, 2] should define the new evaluation order in F . This essentially means
that in the body of F , while evaluating the else branch, first evaluate the
call to F , then evaluate the call to I, and finally evaluate the call to G.
Identity permutations for G, H, and I imply that the evaluation order for
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such functions remains unchanged. With this changed evaluation order, the
number of versions for each function will be 4, and the number of spills
remains the same as in the earlier case.

In our algorithm, once we find a set of desired permutations so that we
can reduce the number of versions by a factor of ni, we stop. The reason is
that once we find one set of permutations, the next time we are unlikely to
succeed.

5 Conclusion

In this paper, we have presented a method that keeps multiple versions of
the same function to reduce memory spills in the presence of recursion. It
is based on a bottom-up intraprocedural register allocation which itself, in
the presence of recursion, eliminates many spills that would otherwise occur
in existing methods. Keeping multiple versions reduces the number of spills
further. We have also presented a method for determining the number of
versions, for which the multiple-version strategy is guaranteed to be prof-
itable. Further, we have solved the problem of determining the number of
meaningful versions through the use of voltage graphs, and discussed other
voltage-graph-based optimizations.

There are two obvious extensions to this work. If we extend our language
to include higher order functions, the following issues will arise. In the DAG
of a function, an occurrence of a higher order parameter will be a nonlinear
node, and it will receive a register assignment, say i. Then the function that
will be bound to the higher order parameter, say h, should have a version
i. Essentially, we have the problem of transferring the information to the
called function that registers R0 till Ri−1 are live at the point of the call.
Therefore we need to know all possible bindings to h at compile time. For a
higher order language, we cannot determine all such bindings during compile
time. However, if we place restrictions on the language so that functions
are prohibited from returning partial applications, i.e., the only higher order
object that can be returned is a manifest function, then we can determine
all bindings to h statically. Our analysis can then easily be extended to such
a higher order language.

An inefficient method to deal with a generalized higher order language
could be to spill all the occupied registers at the point of call to a higher
order function, spill the result of the higher order function, and restore the
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spilled registers after the function returns.
A related extension is to consider lazy languages. Here the problem is

that since variables occuring in a function body may be bound to unevaluated
expressions, or closures, the register requirement of a function cannot be
determined by a mere examination of its body.
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Appendix A

Example 1 /* from [LF80] */

S(k, n) = if (k = 0 and n ≤ 2) then S(1, dn/2e) + S(0, bn/2c) + bn/2c
else if (k ≥ 1 and even(n) and n ≥ 2)

then S(k − 1, dn/2e) + (n− 1)
else if (k ≥ 1 and odd(n) and n ≥ 3)

then S(k − 1, dn/2e) + (n− 2)
else if (k ≥ 0 and n = 1) then 0

Example 2 /* map operation on binary trees */

fmap [ ] = [ ]
fmap Tnode x ltree rtree = Tnode f(x) (fmap ltree) (fmap rtree)
f x = x + 1

Example 3 /* transpose of a square matrix represented as a powerlist */

transpose 〈x〉 = 〈x〉
transpose (p | q) |′ (u | v) = transpose p |′ transpose q)

| (transpose u |′ transpose v)

Here, if A and B are similar matrices, then A |B is the concatenation of A
and B by rows; whereas A |′ B is their concatenation by columns.
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Example 4 /* quicksort */

qs [ ] = [ ]
qs (x : xs) = append (qs (filterl x xs))

(append (filtere x xs) (qs (filterg x xs)))
filterg x [ ] = [ ]
filterg x (y : ys) = if (x < y) then y : (filterg x ys) else filterg x ys
filterl x [ ] = [ ]
filterl x (y : ys) = if (x > y) then y : (filterl x ys) else filterl x ys
filtere x [ ] = x : [ ]
filtere x (y : ys) = if (x = y) then y : (filtere x ys) else filtere x ys

Example 5 /* example involving mutual recursion */

A(x, y) = if (x <= 0) then (1 + y + B(y)) else (x + y) + B(x− 1) + C(x− 2)
B(p) = if (p <= 0) then 1 else B(p− 1) + C(p− 1)
C(i) = if (i <= 4) then 1 else (2 + i) + A(i− 1, i− 2) + C(i− 1) + C(i− 2)

+ C(i− 3) + C(i− 4)

Example 6 /* illustrating duplication of spills */

F (x) = if (x ≤ 10) then 1 else F (x− 1) + F (x− 2) + A(x− 3)
A(y) = if (y ≤ 5) then 1 else A(x− 3) + A(x− 2) + B(x− 1)
B(z) = if (z ≤ 6) then 1 else B(z − 1) + F (z − 2)
MAIN : F (11)

Example 7 /* illustrating the application of voltage graphs */

F (x) = if (x ≤ 1) then 1 else G(x− 1) + I(x− 2) + F (x− 3)
G(z) = if (z ≤ 1) then 1 else G(z − 1) + H(z − 2)
H(p) = if (p ≤ 2) then 1 else H(p− 1) + F (p− 2)
I(q) = if (q ≤ 2) then 1 else I(q − 1) + G(q − 2)

Appendix B
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Arg Arg Incremental Bottom-Up Strategy (Multiple Versions)
k n Strategy 1 Register 2 Registers 3 Registers 4 Registers 5 Registers
1 10,000 894 447 376 310 332 280
1 30,000 1,794 897 808 670 688 552
1 50,000 2,522 1,261 986 832 868 857
1 80,000 3,794 1,897 1,287 1,312 1,017 1,075
1 500,000 12,774 6,010 6,010 4,593 5,213 4,609
0 500,000 20,670 10,335 6,764 7,665 5,965 6,254
2 500,000 7,894 3,947 2,583 2,913 2,276 2,484
3 500,000 4,878 2,439 2,295 1,780 1,988 1,647

Table 3: Number of Spills for Example 1 in Appendix A (Value of N = 2)

Nature of Incremental Bottom-Up Strategy (Multiple Versions)
the Tree Strategy 1 Register 2 Registers 3 Registers 4 Registers 5 Registers 6 Registers

(Left chain) 2,000 1,000 0 0 0 0 0
(Right chain) 2,000 1,000 998 999 1,000 1,000 996

Centered 2,000 1,000 502 501 500 500 498
Centered 2,000 1,000 704 500 504 498 408
Centered 2,000 1,000 701 500 701 701 500
Centered 2,000 1,000 600 599 600 600 596
Centered 2,000 1,000 400 399 400 400 396

Left skewed 2,000 1,000 152 99 100 150 96

Table 4: Number of Spills for Example 2 in Appendix A (Value of N = 2)

Array Array Incremental Bottom-Up Strategy (Multiple Versions)
Dimension Size strategy 1 Register 2 Registers 4 Registers 5 Registers 6 Registers 7 Registers

1 22 3 3 2 0 0 0 0
2 24 15 15 14 12 10 6 0
3 26 63 63 58 46 44 48 42
4 28 255 255 234 182 167 173 207
5 210 1,023 1,023 938 726 681 623 675
6 212 4,095 4,095 3,754 2,902 2,736 2,572 2,347
8 216 65,535 65,535 60,074 46,422 43,692 41,975 41,170

Table 5: Number of Spills for Example 3 in Appendix A (Value of N = 4)

Nature of Incremental Bottom-Up strategy (Multiple Versions)
Input List Strategy 1 Register 2 Registers 3 Registers 4 Registers 5 Registers 6 Registers

Sorted in reverse 4,000 2,000 1,950 1,950 1,948 1,950 1,950
Sorted 4,000 2,000 0 0 0 0 0

4,000 2,000 50 48 48 50 48
4,000 2,000 1,000 999 1,000 1,000 996
3,400 1,700 1,401 1,197 1,200 1,200 1,194
3,400 1,700 701 501 500 500 498
3,000 1,500 500 501 500 500 498

Table 6: Number of Spills for Quicksort Example in Appendix A (Value of
N = 2)
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Arg Incremental Bottom-Up Strategy (Multiple Versions)
Values Strategy 1 Register 3 Registers 4 Registers 5 Registers 6 Registers 7 Registers

8 8 61 50 29 18 21 12 0
10 10 299 244 150 132 109 99 82
12 12 1,541 1,256 801 680 576 502 610
14 14 7,938 6,467 4,512 3,683 2,810 2,633 2,808
16 16 40,710 33,165 22,027 18,684 13,378 13,274 12,678
18 18 209,044 170,297 108,456 96,571 70,496 67,319 62,860
20 20 1,073,040 874,147 577,948 496,215 382,665 352,998 333,641

Table 7: Number of Spills for Example 5 in Appendix A (Value of N = 5)

Arg Multiple Version Strategy
i 1 Register 2 Registers 3 Registers 4 Registers

r-op m-op r-op m-op r-op m-op r-op m-op
10 326 216 326 180 326 188 326 142
14 2,258 1,504 2,258 1,272 2,258 1,174 2,258 1,340
18 15,500 10,332 15,500 8,736 15,500 8,138 15,500 7,982
20 40,586 27,056 40,586 22,876 40,586 21,724 40,586 19,492
22 106,262 70,840 106,262 59,892 106,262 56,714 106,262 50,866
24 278,204 185,468 278,204 156,812 278,204 147,074 278,204 138,844
26 728,354 485,568 728,354 410,544 728,354 383,934 728,354 378,952

Table 8: Memory (m-op) and Register (r-op) Operations when Parameters
are Passed in Registers: The Fibonacci Example
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