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Abstract

The space of rational matrices with �xed size and degree is shown

to have a manifold structure with �bers over a Grassmannian. The

�bers are homeomorphic to a suitable space of strictly proper rational

matrices. This structure is compatible with Willems' partition of

external variables into inputs and outputs.
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1 Introduction

In this paper we study the space of (not necessarily proper) rational ma-

trices with �xed degree. They occur in a variety of contexts in the control

theory literature, primarily as transfer matrices of polynomial systems as

introduced by Rosenbrock [15] and of singular systems.

It is well-known that an arbitrary rational matrix G has a (McMillan)

degree which, roughly speaking, counts the poles of G in the extended

complex plane and that each such matrix can be thought of as the transfer

function G(s) = C(sE � A)�1B + D of an irreducible singular system of

the form E _x = Ax+Bu; y = Cx+Du (see e. g. [17, p. 822], [4, 8, 11, 12]).

Thus, one is lead to consider on the one hand a space of rational matrices

of �xed degree r, on the other hand a space of realizations whose \size"

depends on r, and to investigate relationships among these two spaces.

For state space systems, Byrnes/Duncan [3] showed that the realization

map establishes a homeomorphism between similarity classes of triples of

minimal systems of order r and the space Rat0m;r;p of all strictly proper

��Received June 18, 1992; received in �nal form September 16, 1992. Summary ap-

peared in Volume 5, Number 1, 1995.
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matrices of McMillan degree r over the reals or complexes, provided both

sets are suitable topologized.

In this work we analyze a few basic properties of the (di�erential) space

of improper rational matrices and, more generally, of ARMA-systems of

�xed degree. In a subsequent paper, the second listed author will study

a corresponding quotient space of irreducible system realizations and es-

tablish a homeomorphism between the two spaces, in analogy to the state

space situation. This result, in turn, sets the problem of �nding continuous

realizations.

We stress that, in the existing literature, spaces of improper rational

matrices occur, to the best of our knowledge, as subspaces (or subvarieties)

of compacti�cations of the space Rat0m;r;p � K
p�m of proper matrices (see

e. g. [2, 16]). Such compacti�cations are obtained by embedding Rat0m;r;p

in a high dimensional Grassmannian [2] or projective space [16] and then

taking Zariski closures. They have been considered in the geometric frame-

work for studying dynamic feedback compensation.

In the third section we will use the space Rat0m;r;p to describe the larger

space Ratm;r;p of rational matrices G 2 K(s)p�m with McMillan degree

(i. e. number of poles of G in C [ f1g) d(G) = r.

On the space

~�m;r;p = f(A;B;C) 2 Kr
2+rm+pr j (A;B;C)minimalg (1.1)

of minimal state space systems the similarity action
s
�, which is given

by (A;B;C)
s
�(A0; B0; C0) i� (A0; B0; C0) = (TAT�1; TB;CT�1) for some

T 2 Glr(K), leads to a quotient space �m;r;p = ~�m;r;p= s
�
, which is bijective

to Rat0m;r;p, the bijection being given by the realization map: (A;B;C) 7!

C(sI �A)�1B. Hazewinkel [9] showed that �m;r;p can be given the struc-

ture of an r(p+m)-dimensional manifold (over K), whose underlying topol-

ogy is just the quotient Euclidian one.

On the other hand Hermann/Martin [13] viewed Rat0m;r;p as a space

of rational curves on the Grassmannian Gm(C
p+m ) of m-dimensional sub-

spaces of C p�m : via a polynomial coprime factorization G = PQ�1 2

Rat0m;r;p, we associate with X =
h
P

Q

i
the rational map

�X : S2 �! Gm(C
p+m )

s 7�!

8><
>:

spanX(s) ; s 2 C

span

�
0

Im

�
; s =1:

(1.2)

Interpreting this way, Rat0m;r;p is just the space of all rational maps from

the Riemann sphere S2 to the Grassmannian of degree r (in the algebraic
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sense) and with the base point condition 1 7! span
�
0
I

�
. It is shown

by Byrnes/Duncan [3], that the realization map induces an homeomor-

phism from �m;r;p to Rat0m;r;p, endowed with the compact-open topology

(or topology of uniform convergence, if we look at Gm(C
p+m ) as a metric

space).

We will follow the Hermann/Martin approach for the analysis of the

space Ratm;r;p. The last part of the introduction is devoted to a brief

sketch of the paper.

The properties of coprime factorizations for rational matrices show that

Ratm;r;p is included in the space Im;r;p = fhXi j rkX(s) = m for s 2

C ; �(X) = rg, where, for X 2 K[s](p+m)�m , hXi denotes the equiva-

lence class fXU j U 2 K[s]m�m unimodularg and �(X) = maxfdeg det � j

� m�m-submatrix ofXg is a generalization of the McMillan degree. Im;r;p

(or, better, its dual version usingX 2 K[s]p�(p+m) ) can then be interpreted

as a set of equivalence classes of ARMA-systems.

Using a Hermann/Martin map analogous to (1.2), Im;r;p can be iden-

ti�ed with the space of all rational maps with degree r from S2 to the

Grassmannian, the only di�erence being the base point condition: for

hXi 2 Im;r;p

�X (1) = span limt!1X��1(t); where

� is an m�m-submatrix ofX with deg det � = r:
(1.3)

In the case of a strictly proper matrix G this leads to the de�nition (1.2).

While Rat0m;r;p is the subspace of Im;r;p of all rational maps from S2

to Gm(C
p+m ) of degree r which satisfy the condition 1 7! span

�
0
I

�
, each

curve corresponding to a non-strictly proper element of Ratm;r;p will attain

at1 a di�erent value on Gm(C
p+m ). In other words, the non-singularity of

Q in
h
P

Q

i
cannot be detected from the point at1 on the associated curve.

On the other hand, if we �x a point ! 2 Gm(C
p+m ), the set of curves �X for

which �X (1) = ! is in bijective correspondence with Rat0m;r;p. This sug-

gests that Im;r;p has a �ber structure with �bers homeomorphic to Rat0m;r;p

(the �ber over span
�
0
I

�
2 Gm(C

p+m )) and base space the Grassmannian

of \values at in�nity". This is in fact true if Im;r;p is endowed with the

compact-open topology.

More precisely, if hXi 2 Im;r;p is such that �X (1) = span�
h
Z

I

i
, where

� is a permutation matrix and Z 2 Kp�m , it then follows X = �
h
P

Q

i
with

deg detQ = r, and hence that PQ�1 is proper. Thus there exists a permu-

tation of the data (the rows of X) which leads to a proper matrix. This

permutation depends on the standard chart of the Grassmannian in which

�X (1) can be located. The constant part of the obtained proper ma-

trix describes the �-coordinates of �X(1) 2 Gm(C
p+m ), while the strictly
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proper part selects the point on the �ber. In this sense the space Im;r;p is

the local product of a Grassmannian with Rat0m;r;p, and thus an analytic

manifold.

2 Preliminaries

We begin with some notations: let K denote the �eld of real or complex

numbers. For m 2 N put

m = f1; : : : ;mg,

P(m) = fP 2 Km�m j P permutation matrixg,

Um(K) = fU 2 K[s]m�m j detU � c 2 K�g, the unimodular matrices,

Rm(K) = fQ 2 K[s]m�m j detQ 6� 0g, the non-singular matrices in

K[s]m�m .

For a proper rational matrix G 2 K(s)p�m the McMillan degree d(G)

is de�ned to be the number of poles of G counting multiplicities in the

complex plane C . It can be computed via the Smith-McMillan form of G,

which gives even more information, namely the structure at the various

poles. In a simpler way the degree can be expressed by deg detQ, where

PQ�1 = G is a polynomial coprime factorization of G, P 2 K[s]p�m ; Q 2

Rm(K).

For an improper rational matrix G the McMillan degree d(G) is also

de�ned to be the number of poles of G, which, in this case, has to take into

account the poles at 1. It can be computed by partitioning G = G�+G+

into its strictly proper part G� and its polynomial part G+ 2 K[s]
p�m and

counting the �nite and in�nite poles separately. Thus

d(G) = d(G�) + d(Ĝ+);

where Ĝ+(s) = G+(s
�1) 2 K(s)p�m is proper with poles only at s = 0.

The main results on polynomial coprime factorizations can be summa-

rized in the following

Theorem 2.1 (Polynomial coprime factorizations)

a) Let G 2 K(s)p�m . Then there exists a polynomial coprime factorization

of G, i. e. there are polynomial matrices P 2 K[s]p�m ; Q 2 Rm(K)

satisfying G = PQ�1 and rk[P (s)t; Q(s)t]t = m for all s 2 C .

b) If G = PQ�1 = P̂ Q̂�1 are two coprime factorizations, then there exists

U 2 Um(K) such that P̂ = PU; Q̂ = QU .

For a proof see e.g. [6, Section 2.1] or [5, Theorem 22.11].

As in the proper case it is possible to compute the McMillan degree

of G via polynomial coprime factorizations. This can be done in a more

general setting.
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De�nition 2.2 For X 2 K[s](p+m)�m with rkX(s) = m for all s 2 C put

�(X) = maxfdeg det� j �m�m-submatrix of Xg:

�(X) is called the McMillan degree of X. Each m �m-submatrix � of X

which ful�lls deg det� = �(X), is said to be a maximal m-submatrix.

The following lemma establishes the coincidence of the two di�erent

notions of McMillan degree. A proof can be found in Janssen [10, Cor. 3.1].

Lemma 2.3 Let
h
P

Q

i
2 K[s](p+m)�m with rk

h
P (s)
Q(s)

i
= m for all s 2 C and

Q 2 Rm(K). Then

a) PQ�1 is (strictly) proper () Q is (the only) maximal m-submatrix of

[P t; Qt]t.

b) �([P t; Qt]t) = d(PQ�1), the McMillan degree of PQ�1.

In view of the preceding discussion we de�ne

Ratm;r;p(K) =

��
P

Q

�
2 K[s](p+m)�m j rk

�
P (s)

Q(s)

�
= m for s 2 C ;

Q 2 Rm(K); �

�
P

Q

�
= r

��
Um(K)

(2.1)

where Um(K) acts by multiplication from the right. In the following we will

use the name \rational matrix" not only for G = PQ�1 2 K(s)p�m but

also for the equivalence classes h
h
P
Q

i
i satisfying rk

h
P (s)
Q(s)

i
= m for all s 2 C

with Q 2 Rm(K), where the lowerm�m-block stands for the denominator.

In this way we identify the space Rat0m;r;p of strictly proper matrices with

the subspace fh
h
P

Q

i
i 2 Ratm;r;p j PQ

�1 strictly properg.

Remark 2.4 From [17] it is known, that the McMillan degree of a ra-

tional matrix G is the order of a strong irreducible realization of G, i. e.

if G(s) = C(sE � A)�1B + D and the singular system (E;A;B;C;D) is

strong irreducible (see [17, p. 822]), then rkE = d(G).

In a future paper the second listed author will construct a quotient

space of strong irreducible singular systems (E;A;B;C;D) corresponding

bijectively to the space Ratm;r;p(K), so that the realization map

(E;A;B;C;D) 7! C(sE � A)�1B +D

induces a homeomorphism (the topology of Ratm;r;p(K) will be de�ned in

the next section). This result generalizes the well-known homeomorphism

between Rat0m;r;p(C ) and the quotient space of minimal state space systems
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of order r modulo similarity induced by the realization map. Using the local

structure of Ratm;r;p, and more generally of ARMA-systems (in the dual

version), which we will derive in Theorem 3.5, the study of the generalized

transfer function can then be reduced to the state space situation.

The last lemmaof this section will be used later. It shows how a rational

matrix G = PQ�1 is transformed if the rows of
h
P

Q

i
are partitioned in a

di�erent way in numerator and denominator. Note that, by Lemma 2.3,

G can be transformed to a proper matrix by appropriate choice of the

denominator matrix.

Lemma 2.5 Suppose G = PQ�1 2 K(s)p�m with P 2 K[s]p�m ; Q 2

Rm(K) is a coprime factorization. Let the matrices be partitioned as

P =

�
P1 P2
P3 P4

�
; Q =

�
Q1 Q2

Q3 Q4

�
; G =

�
G1 G2

G3 G4

�

where P4; Q2 and G3 are k � k-blocks with 1 � k � minfm; pg. Then

detG3 6� 0() det

�
P3 P4
Q3 Q4

�
6� 0

and in this case

�
P1 P2
Q1 Q2

��
P3 P4
Q3 Q4

��1
=

�
G1G

�1
3 G2 �G1G

�1
3 G4

G�13 �G�13 G4

�
.

Proof: follows directly from

�
P3 P4
Q3 Q4

��
Q1 Q2

Q3 Q4

��1
=

�
G3 G4

0 Im�k

�
and

�
P1 P2
Q1 Q2

��
Q1 Q2

Q3 Q4

��1
=

�
G1 G2

Ik 0

�
. 2

3 The Space of Rational Curves of Fixed Degree

Using equivalence classes of coprime factorizations one can construct easily

transformations which map an arbitrary rational matrix into a proper one:

take a maximal m-submatrix of h
h
P
Q

i
i as denominator and the remaining

rows as numerator of the new rational matrix. This construction makes

sense also for equivalence classes h
h
P

Q

i
i, which do not satisfy the regularity

condition detQ 6� 0. From a system theoretic point of view the dual

version of h
h
P

Q

i
i, namely h[ ~Q; ~P ]i � K[s]p�(p+m) can be understood as

an equivalence class of ARMA-systems. In this sense the above described

transformation can be interpreted as Willems' partition of the external

variables into inputs and outputs (see [20, Theorem 4.3] and also [12]).

6



IMPROPER RATIONAL MATRICES

Thus, dropping the regularity condition in (2.1), we obtain the larger

space

Im;r;p(K) = fX 2 K[s](p+m)�m j rkX(s) = m for s 2 C ;

�(X) = rg=Um(K)
(3.1)

where again Um(K) acts by multiplication from the right, i. e. if hXi; hY i

denote the equivalence classes of X; Y 2 K[s](p+m)�m in Im;r;p(K), then

hXi = hY i i� XU = Y for some U 2 Um(K).

Note that the map

Im;r;p(R) �! Im;r;p(C )

hXi
R

7�! hXi
C

is injective. This can be seen as follows. From hXi
C
= hY i

C
with real

matrices X; Y it follows XU = Y for some U 2 Um(C ). Without loss of

generality we can assume X = [Xt
1; X

t
2]
t; Y = [Y t

1 ; Y
t
2 ]

t where X2; Y2 2

Rm(R). But then X1X
�1
2 = Y1Y

�1
2 2 R(s)p�m and by the uniqueness

of coprime factorizations it follows XV = Y with some V 2 Um(R). In

this way we can identify the spaces Im;r;p(R) and Ratm;r;p(R) as subsets

of Im;r;p(C ), which allows us to write hXi instead of hXi
R
or hXi

C
.

Along the lines of [13], we will topologize the space Im;r;p(C ) by inter-

preting its elements as curves. For each hXi 2 Im;r;p(K) denote by �X

the following map from the Riemannian sphere S2 to the Grassmannian

Gm(C
p+m ) of m-dimensional subspaces of C p+m

�X : S2 �! Gm(C
p+m )

s 7�!

8<
:
spanX(s) s 2 C

span limjtj!1X(t)�(t)�1 s =1

with a maximalm-submatrix � of X

(3.2)

It is easy to show that this map is in fact well-de�ned, i. e. it depends only

on the equivalence class of X in Im;r;p(C ) and is independent of the choice

of the (non-unique) maximal m-submatrix �. Moreover, it is easy to see

that �X(1) is the span of the high order coe�cient matrix of X, if we

choose X as a minimal basis (in the sense of Forney [7, p. 495]).

In the special case hXi = h
h
P
Q

i
i where Q 2 Rm(K) and PQ�1 is

strictly proper, the map �X ful�lls the \base point condition" �X(1) =

span [0; Im]
t, which gives the well-known Hermann/Martin-mappings in the

case of strictly proper rational matrices.

Via the Pl�ucker-embedding of Gm(C
p+m ) in the projective space

CP
(p+mm )�1 the map �X can be interpreted as a rational map from CP

1

to CP(
p+m

m )�1. Then, by de�nition, the McMillan degree is just the degree

7
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of this rational mapping and thus also the topological degree (in second

homology). Hence Im;r;p(C ) is just the space of all rational maps between

the algebraic varieties S2 and Gm(C
p+m ) of topological degree r, whereas

Im;r;p(R) consists of those curves which commute with the complex conju-

gation.

Endow Im;r;p(C ) with the compact-open topology, that is, a subbasis

for the topology in Im;r;p(C ) is given by the sets hK;Ui = ff 2 Im;r;p(C ) j

f(K) � Ug, where K runs over all compacta in S2 and U over all open sets

in Gm(C
p+m ). The subsets Ratm;r;p(C ); Im;r;p(R) and Ratm;r;p(R) will be

equipped with the induced topologies. Remember that the compact-open

topology on this spaces is just the topology of uniform convergence since

S2 is compact and Gm(C
p+m ) is a metric space.

Remark 3.1 In a recent paper Meyer [14] showed that the quotient space

of minimal state space systems (A;B;C;D) of order r modulo similarity

with the quotient Euclidian topology is homeomorphic to Rat0m;r;p(R)�

R
p�m endowed with the graph topology (see Vidyasagar [18]). Since on

the other side Rat0m;r;p(R)�R
p�m endowed with the topology of uniform

convergence on S2 is homeomorphic to the same quotient space, we can

conclude that the graph topology on Rat0m;r;p(R)� R
p�m coincides with

the topology introduced in this paper. In view of Theorem 3.5, which

uses precisely this topology on Rat0m;r;p(R), we can say that we are dealing

with a sort of graph topology de�ned on Im;r;p(R) instead of the topology

of uniform convergence on S2. It is worth noting that the coincidence of

these topologies holds only in the case when the McMillan degree remains

�xed, since otherwise pole-zero cancellation may occur.

Remark 3.2 With the embeddings S1 � S2 and Gm(R
p+m) � Gm(C

p+m )

it holds

Im;r;p(R) = fhXi 2 Im;r;p(C ) j �X(S
1) � Gm(R

p+m)g;

which can be seen as follows: assume that hXi 62 Im;r;p(R) and let X =

[Xt
1; X

t
2]
t where X2 is a maximal m-submatrix of X. Then X1X

�1
2 2

C (s)p�mnR(s)p�m and hence there exists s0 2 R so that detX2(s0) 6= 0

and �X(s0) = span [(X1(s0)X2(s0)
�1)t; Im]

t 62 Gm(R
p+m). Thus we can

consider Im;r;p(R) also as a space of maps from S1 to Gm(R
p+m).

The point �X(1) gives some information about hXi 2 Im;r;p(K): in

fact

�X(1) = span [M t; Im]
t () hXi 2 Ratm;r;p(K) is proper (3.3)

(and moreover, M = 0() hXi strictly proper).

\(" of the above equivalence is obvious,
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\)" let X =
h
P

Q

i
, �X(1) = span limjtj!1[(P��1(t)t; (Q��1(t))t]t =

span [M t; Im]
t, with an arbitrary maximalm-submatrix � of X. We have

to show: deg detQ = deg det �. From limjtj!1Q(t)�(t)�1 2 Glm it fol-

lows detQ 6� 0 and limjtj!1�(t)Q�1(t) 2 Glm. Hence, Lemma 2.3 yields

deg detQ = deg det �. Observe that in (3.3) M is the constant part of the

proper rational matrix (corresponding to) hXi.

On the other side, in the non-proper case �X(1) gives no information

about the non-singularity of X2, where X = [Xt
1; X

t
2]
t. Of course, for this

property one has to �nd any point s 2 S2 where detX2(s) 6= 0. However,

we have the following

Proposition 3.3 Ratm;r;p(K) is an open subset of Im;r;p(K).

Proof:

1) K = C .

Let l =
�
p+m
m

�
� 1 and

P : Gm(C
p+m ) �! CP

l

spanM 7�! [M0 : : : : :Ml]

be the Pl�ucker-embedding of the Grassmannian in projective space, where

Mi are the m �m-minors of M in a prescribed order and Ml is the minor

computed from the last m rows of M .

Let N = f[x0 : : : : : xl�1 : 0] j (x0; : : : ; xl�1) 2 C
lnf0gg. Then N is closed

in CPl and for hXi 2 Im;r;p(C ) it holds: hXi 2 Ratm;r;p(C ) () P ��X 62

hS2; N \ Gm(C
p+m )i. Since Gm(C

p+m )nN is open in Gm(C
p+m ), it follows

that

Ratm;r;p(C ) = Im;r;p(C )nhS
2 ; N \ Gm(C

p+m )i =
[
K�S2

compact

hK;Gm(C
p+m )nNi

is open in Im;r;p(C ).

2) The case K = R follows easily from Ratm;r;p(R) = Ratm;r;p(C ) \

Im;r;p(R). 2

The structure of the space Im;r;p(K) can be described in more detail via

a precise study of the points at in�nity of the curves �X . In order to do so

it is helpful to use the manifold structure of the Grassmannian, which will

be introduced next:

De�nition 3.4 Let p; m 2 N be given.

a) De�ne J = f(j1; : : : ; jm) j ji 2 N; 1 � j1 < : : : < jm � p +mg.

9
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b) For J = (j1; : : : ; jm) 2 J let j�1 ; : : : ; j
�
p 2 p+m so that j�1 < : : : < j�p

and fj1; : : : ; jmg [ fj
�
1 ; : : : ; j

�
pg = p+m holds. Further put

�J = [a1; : : : ; ap+m] 2 P(p+m) with ai =

�
ep+l for i = jl; l 2 m;

el for i = j�l ; l 2 p

where ei denotes the i-th standard basis vector.

c) For J = (j1; : : : ; jm) 2 J let k(J) = #fi 2 m j ji � pg.

d) For k 2 minfm; pg put

Vk =

2
664
Ip�k 0 0 0

0 0 Ik 0

0 Ik 0 0

0 0 0 Im�k

3
775:

Note that �J is the permutation which in the matrix �J

h
X

I

i
2 K(p+m)�m

places the identity Im on the rows with indices j1; : : : ; jm, whereas the

rows of X 2 K
p�mare, according to their ordering, placed on the rows

with indices j�1 ; : : : ; j
�
p . Moreover, for �J 2 P(p +m) there exist a unique

representation of the form

�J =

�
� 0

0 %

�
2
664
Ip�k(J) 0 0 0

0 0 Ik(J) 0

0 Ik(J) 0 0

0 0 0 Im�k(J)

3
775 (3.4)

with � 2 P(p) and % 2 P(m).

The domains of the charts of the manifold Gm(K
p+m ) are given by

chK(J) := fspan�J

�
X

Im

�
j X 2 Kp�mg (3.5)

where J runs through the set J of all so-called Schubert-coordinates.

With the obvious coordinate mappings chK(J) ! K
p�m the Grassman-

nian Gm(K
p+m ) becomes an analytic manifold of dimension pm over K

(see [19, S. 176]).

Using this notation, (3.3) may be written in the more general form

�X(1) 2 chK(J) () hXi = h�J

�
P

Q

�
i

with a maximalm-submatrixQ 2 Rm(K):

In this case PQ�1 is proper and it holds �X(1) = span�J

h
PQ�1 (1)

Im

i
.

This leads to the observation that | up to a permutation of rows | the

elements of Im;r;p(K) can be considered as proper rational matrices. More

10
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precisely, they are given uniquely by a strictly proper rational matrix and

a point on the Grassmannian, which contains just an additional constant

part of the rational matrix and the permutation of rows (see (3.5)). This

pointwise description can be made global for Im;r;p(K) in a continuous way,

as it is stated by the following theorem.

Theorem 3.5 The map

�K
1
: Im;r;p(K) �! Gm(K

p+m )

hXi 7�! �X (1)

is continuous and gives Im;r;p(K) the structure of a locally trivial �bration

with �bers homeomorphic to Rat0m;r;p(K):

for J 2 J it is (�K
1
)�1(chK(J))

homeo
� chK(J)� Rat0m;r;p(K).

Proof: We consider �rst the complex case K = C ; let �C1 = �1 and

chC(J) = ch(J), for short.

a) For U � Gm(C
p+m ) it is ��11 (U ) = h1; Ui � Im;r;p(C ), thus �1 is

continuous.

b) For given J 2 J de�ne

	J : ch(J) �Rat0m;r;p(C ) �! ��11 (ch(J))

(span�J

�
D

Im

�
; h

�
P

Q

�
i) 7�! h�J

�
P +DQ

Q

�
i

(3.6)

It is not hard to show the bijectivity of 	J and the commutativity of the

diagram

ch(J) �Rat0m;r;p(C )
-	J ��11 (ch(J))

Q
Q
Q
Q
Q
Qs

pr1

�
�
�
�
�
�+

�1

ch(J)

(3.7)

with pr1 being the projection onto the �rst component. Hence it remains

to be proven the bicontinuity of 	J .

Since S2 is compact and Gm(C
p+m ) a metric space, the compact-open

topology on Im;r;p(C ) and its subspaces coincides with the topology of

uniform convergence. Hence one can prove the bicontinuity of 	J by con-

sidering sequences. Note that for hXi 2 Rat0m;r;p(C ) it is

	J (span�J

�
D

I

�
; hXi) =: hY i with �Y = �J

�
I D

0 I

�
��X ;

11
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where G denotes the homeomorphism on Gm(C
p+m ) induced by G 2

Glp+m(C ). Now the continuity of 	J follows from the action of Glp+m on

the Grassmannian manifold, namely, if Gl; G 2 Glp+m with liml!1 Gl =

G in Glp+m, then it holds liml!1 Gl = G in the compact-open topology

of C(Gm(C
p+m );Gm(C

p+m )). The continuity of 	�1J follows by symmetry,

if one realizes, that the fact liml!1 h�J

�
Pl +DlQl

Ql

�
i = h�J

�
P +DQ

Q

�
i

implies (by considering the point at 1): liml!1Dl = D.

In the case K = R, the continuity of �R
1

follows from the complex case,

since Im;r;p(R) and Gm(R
p+m) are endowed with the subspace topologies.

Analogously to (3.6) we can de�ne the map 	RJ with domain chR(J) �

Rat0m;r;p(R) and range (�R
1
)�1(chR(J)). Then it follows directly, that 	RJ

is bijective and a homeomorphism, since 	J is. 2

In the following we will always write Im;r;p; Ratm;r;p etc. and ch(J)

and �1 without any speci�cation of the �eld K, since we do not have to

distinguish between the real and complex case anymore.

For the subspace Ratm;r;p � Im;r;p the structure is much more di�cult

to describe. This is not surprising, since the representation

�1h

�
X1

X2

�
i = span �J

�
D

I

�
2 ch(J)

gives no information about the determinant ofX2. In this case the structure

of the �bers ��11 (d) depends on the point d on the Grassmannian. We will

give a brief sketch of this: let

d = span

�
� 0

0 %

�
2
664
D1 D2

Ik 0

0 D4

0 Im�k

3
775 2 Gm(Kp+m )

with suitable k � minfm; pg and � 2 P(p); % 2 P(m). Such a repre-

sentation exists for each d 2 Gm(K
p+m ), taking for instance d = spanM

with M in column echelon form (or, in other words, remembering the cell

decomposition of the Grassmannian). Then one can prove

��11 (d) \Ratm;r;p
homeo
� fh

2
664
P1
P2
Q1

Q2

3
775i 2 Rat0m;r;p j

�
P2
Q2

�
2 Rmg;

where P2 2 K[s]
k�m ; Q2 2 K[s]

(m�k)�m . Applying Lemma 2.5 and the

12
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usual description for rational matrices the above can be written as

��1
1
(d) \Ratm;r;p

homeo
�

fG =

�
G1 G2

G3 G4

�
2 Rat0m;r;p j G3 2 K(s)

k�k ; detG3 6� 0g:

4 A Manifold Structure for Im;r;p(K)

Since the work of Hazewinkel [9] and Byrnes/Duncan [3] it is known that

the space of strictly proper transfer matrices of �xed McMillan degree can

be given the structure of an analytic manifold. This can be done by forming

the quotient space of minimal state space realizations modulo similarity.

Let ~�m;r;p be as in (1.1), �m;r;p = ~�m;r;p= s
�

the quotient modulo simi-

larity action
s
�, and � : ~�m;r;p ! �m;r;p the canonical projection. Endow

�m;r;p with the quotient topology.

The manifold structure of �m;r;p can be described via local canonical

forms:

Let [(A;B;C)] = �(A;B;C) be the similarity orbit of (A;B;C) and put

K(r;m) = f(�1; : : : ; �m) j �i 2 N0;
Pm

i=1 �i = rg (the set K(r;m)

will parametrize the charts of the manifold �m;r;p). De�ne for � =

(�1; : : : ; �m) 2 K(r;m) and (A;B;C) 2 ~�m;r;p with B = [b1; : : : ; bm]

R(A;B;C)� = [b1; Ab1; : : : ; A
�1�1b1; : : : ; bm; : : : ; A

�m�1bm] 2 K
r�r

and �nally V� = f(A;B;C) 2 ~�m;r;p j detR(A;B;C)� 6= 0g.

We summarize the known results in the following, the proof of them

can be found e.g. in Hazewinkel [9, Theorem 2.5.17] and Byrnes/Duncan

[3, p. 43, p. 46]

Theorem 4.1 �m;r;p is an analytic non-compact manifold of dimension

r(m + p) over K with charts (�(V�); ��); � 2 K(r;m), where

�� : �(V�) �! K
r(m+p)

[(A;B;C)] 7�! (R(A;B;C)�1� [A�1b1; : : : ; A
�mbm]; CR(A;B;C)�)

Moreover, the map �m;r;p ! Rat0m;r;p; [(A;B;C)] 7! C(sI � A)�1B is

a homeomorphism, if Rat0m;r;p(R) � Rat0m;r;p(C ) � Im;r;p(C ) is endowed

with the compact-open topology, as introduced in Section 3.

Since Im;r;p is locally homeomorphic to ch(J)�Rat0m;r;p, the above theorem

implies at once, that the space Im;r;p is locally an analytic manifold of

dimension r(m+ p)+mp. This analytic structure will also be global if the

coordinate changes between two charts ch(J) � �(V�) and ch( ~J) � �(V�)

13
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are shown to be analytic. In order to do so we can restrict ourselves to the

case ~J = (p+ 1; : : : ; p+m) 2 J . So let

d = span

�
~D

I

�
= span�J

�
D

I

�
2 ch( ~J ) \ ch(J)

for some given J 2 J . Thanks to the manifold structure of Gm(K
p+m ), the

coordinate change ~D 7! D is analytic. Thus it remains to be proven the

analyticity of the map

�J : Rat0m;r;p �! Rat0m;r;p

h

�
~P
~Q

�
i 7�! h

�
P

Q

�
i

(4.1)

where

h�J

�
P +DQ

Q

�
i = h

�
~P + ~D ~Q

~Q

�
i: (4.2)

The condition (4.2) is just

	�1~J �	J (d; h

�
P

Q

�
i) = (d; h

�
~P
~Q

�
i)

with 	J as in (3.6).

The study of the map (4.1) is divided into two parts: in a �rst step the

application of �J on h

�
~P
~Q

�
i is translated into a transformation of ~P ~Q�1 into

PQ�1, in a second lemma this transformation is expressed in terms of min-

imal state space representation so that the analytic structure of Rat0m;r;p

comes in.

Lemma 4.2 Fix J 2 J with k(J) = k; �J =

�
� 0

0 %

�
Vk; � 2 P(p); % 2

P(m) and

d = span

�
~D

I

�
= span

�
� 0

0 %

�
2
664
D1 D2

Ik 0

D3 D4

0 Im�k

3
775 2 Gm(Kp+m ):

Further let (4.2) hold and put ~D = �

�
~D1

~D2

~D3
~D4

�
% and

�
Z1 Z2

Z3 Z4

�
=

��1[ ~P ~Q�1 + ~D]% where ~D3 and Z3 are k � k-matrices. Then:

a) D3; ~D3 2 Glk and

�
D1 D2

D3 D4

�
=

�
~D1

~D�1
3

~D2 � ~D1
~D�1
3

~D4

~D�1
3 � ~D�1

3
~D4

�

b) PQ�1 =

�
Z1Z

�1
3 Z2 � Z1Z

�1
3 Z4

Z�13 �Z�13 Z4

�
�

�
D1 D2

D3 D4

�
.

14
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Proof: a) From

span

2
664
D1 D2

Ik 0

D3 D4

0 Im�k

3
775 = span

�
��1 0

0 %�1

��
~D

I

�
= span

�
��1 0

0 %�1

��
~D

I

�
%

= span

2
664
~D1

~D2

~D3
~D4

Ik 0

0 Im�k

3
775

it follows that D3; ~D3 2 Glk and so D =

�
D1 D2

D3 D4

�
=

�
~D1

~D2

Ik 0

��
~D3

~D4

0 Im�k

��1
=

�
~D1

~D�1
3

~D2 � ~D1
~D�1
3

~D4

~D�1
3 � ~D�1

3
~D4

�
:

b) The invertibility of ~D3 implies detZ3 6� 0. Moreover, by (4.2)

hVk

�
��1 0

0 %�1

��
~P + ~D ~Q

~Q

�
i = h��1J

�
~P + ~D ~Q

~Q

�
i = h

�
P +DQ

Q

�
i;

and the claim follows thanks to Lemma 2.5. 2

The following lemma can be easily veri�ed.

Lemma 4.3 Let T =

�
T1 T2
T3 T4

�
2 Kp�m be proper with T3 2 K(s)

k�k ,

det T3 6� 0 and put T̂ =

�
T1T

�1
3 T2 � T1T

�1
3 T4

T�13 �T�13 T4

�
. If T (s) =�

C1

C2

�
(sI �A)�1[B1; B2] +

�
D1 D2

D3 D4

�
is a minimal state space realization

and detD3 6= 0, then T̂ (s) =

�
C1 �D1D

�1
3 C2

�D�1
3 C2

�
(sI �A+ B1D

�1
3 C2)

�1[B1D
�1
3 ; B2 �B1D

�1
3 D4]

+

�
D1D

�1
3 D2 �D1D

�1
3 D4

D�1
3 �D�1

3 D4

�

is a minimal state space realization as well.

Combining these two lemmata, the map �J in (4.1), (4.2) can be written

as

fJ : �m;r;p �! �m;r;p

[(A; [B1; B2];

�
C1

C2

�
)] 7�! [( ~A; ~B; ~C)]

15
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where ( ~A; ~B; ~C) =

(A �B1D
�1
3 C2; [B1D

�1
3 ; B2 �B1D

�1
3 D4];

�
C1 �D1D

�1
3 C2

�D�1
3 C2

�
):

This is in fact analytic, so we get:

Corollary 4.4 The space Im;r;p(K) is an analytic manifold of dimension

r(m+p)+mp over K. The underlying topology is the compact-open topology.

Ratm;r;p(K) is an open submanifold.

Using the results on Rat0m;r;p we can derive at once some consequences.

Corollary 4.5

a) Im;r;p and Ratm;r;p are non-compact for r � 1 (Im;0;p
homeo
� Gm(K

p+m ),

Ratm;0;p
homeo
� K

p�m ).

b) Rat0m;r;p � K
p�m and Ratm;r;p are dense subsets of Im;r;p.

c) Im;r;p(C ) is connected for all m; p � 1, Im;r;p(R) is connected for

maxfm; pg > 1. I1;r;1(R) = Rat1;r;1(R) falls into r + 1 connected com-

ponents, parametrized by the winding number of the maps from S1 to

S1 induced by the elements of Rat1;r;1(R).

Proof:

a) Follows from the non-compactness of Rat0m;r;p, which is homeomor-

phic to the �bers of the continuous map �1.

Im;0;p (resp. Ratm;0;p) is the space of constant maps from KP
1 to

Gm(K
p+m ) (resp. to ch(J) � Gm(K

p+m ), where J = (p + 1; : : : ; p +

m)).

b) Follows from the openess of the map �1 and the fact that ch(J) is

dense in Gm(K
p+m ) for all J 2 J .

c) The �rst statements hold since Rat0m;r;p(C ) is connected and

Rat0m;r;p(R) is connected whenever maxfm; pg > 1.

For the second part, remember that Brockett [1] has shown that

Rat01;r;1(R) consists of r+1 connected components indexed by the winding

number (Cauchy index) of the elements of Rat01;r;1(R), viewed as maps from

S1 to S1
homeo
� G1(R

2). Indeed, it can be shown that for each f 2 Rat01;r;1(R)

the Cauchy index is an element of f�r;�r+2; : : :; r�2; rg and that each of

these numbers occurs as Cauchy index of a suitable element in Rat01;r;1(R).

Brockett showed the continuity of the Cauchy index and the arcwise con-

nectivity of those subsets of Rat01;r;1(R) in which the Cauchy index is �xed.

From this the claimed number of connected components of Rat01;r;1(R)
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follows. The case Rat1;r;1(R) can easily be reduced to the proper case

Rat01;r;1(R)�R. 2

We want to close the paper with a brief comparison of the above results

with those of Cobb [4]. Cobb studied the space of rational matrices with

�xed degree, but where the degree is de�ned as follows:

let G = G� +G+ with G� strictly proper and G+ polynomial and de�ne

�̂(G) = d(G�) + maxfk + deg T j T k � k-minor 6� 0 ofG+g:

It is easy to see that this can be rewritten as

�̂(G) = d(G�) + d(s�1G+(s
�1)):

The reason for this de�nition is that �̂(G) is precisely the minimal dimen-

sion of a singular system realization G(s) = C(sE�A)�1B, with the size of

the matrixE as dimension, see [4, Prop. 4.3]. Remember that the McMillan

degree de�ned in De�nition 2.2 is just rkE in strongly irreducible realiza-

tions G(s) = C(sE�A)�1B+D (see [17, p. 822]). So the di�erence of the

de�nitions comes in by treating proper (but not strictly proper) systems

di�erently. In the single-input single-output case the de�nition of Cobb

becomes

�̂(pq�1) = maxfdeg q; deg p + 1g

if p and q are coprime. Thus ff 2 R(s) j �̂(f) = rg = Rat01;r;1(R)[ ff 2

R(s) j f�1 2 Rat1;r�1;1(R) properg. Cobb proved that the space fG 2

R(s)p�m j �̂(G) = rg is connected for every m; r; p � 1 if it is topologized

in a suitable way as a subspace of RPn(pm+1) (see [4, Theorem 4.4]).
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