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An Investigation of Measurement Uncertainty  
of Coordinate Measuring Machines (CMMs)  
by Comparative Analysis
By Jayson Minix, Hans Chapman, Nilesh Joshi, and Ahmad Zargari

ABSTRACT
Measurement uncertainty is one of the root 
causes of waste due to variation in industrial 
manufacturing. This article establishes the 
impact of certain factors on measurement 
uncertainty while using coordinate measurement 
machines as well as its reduction through the 
usage of recognized Gage R&R methodology 
to include ANOVA. Measurement uncertainty 
stemming from equipment and appraiser 
variation is identified and ranked according to 
its degree of impact. A comparative analysis 
is conducted showing how different CMMs of 
similar design can generate differing amounts 
of measurement uncertainty. The approach set 
forth in this paper not only proves effective with 
CMMs but can also be applied to other complex 
multivariate measurement systems. 

Keywords: coordinate measuring machine, 
gage repeatability & reproducibility, equipment 
variation, appraiser variation, measurement 
system analysis, measurement uncertainty.
          
INTRODUCTION  
AND STATE OF THE ART
Measurement error is one of the root causes 
of variation, or waste, in any manufacturing 
process. As such all measurement errors must 
be properly identified and understood in order 
to determine the quality of a manufacturing 
process. This task is accomplished by performing 
a Measurement System Analysis (MSA) on each 
measurement system in a given manufacturing 
process. Perhaps the most well known type of 
MSA performed is a Gage Repeatability  
& Reproducibility (R&R) Study. 

Gage Repeatability is primarily the variation 
observed in the measurement gage itself and is 
often considered to be the equipment variation. 
Gage Reproducibility is variation introduced 
into the measurement system when a variable is 
changed, that is, a different operator using the 
same gage.  The repeatability and reproducibility 
combined are what determines the total 
“measurement error,” or “noise” in a given 

measurement system.  This noise is the source 
of measurement uncertainty in the measurement 
data (Kappele, 2005). 

Typically a measurement system is considered 
capable if it has a low amount of uncertainty. 
Ideally this is determined by less than 1% noise 
and a total Gage R&R of less than 10%. The 
total percentage of Gage R&R is a combination 
of both the measurement uncertainty as well 
as part-to-part variation. Systems having more 
than 10% noise or a combined Gage R&R of 
more than 30% are considered unacceptable, 
and every effort should be made to improve the 
measurement system (MSA Workgroup, 2010). 

The three most recognized methods of Gage 
R&R as set forth in the Measurement Systems 
Analysis Reference Manual are the Range 
Method, the Average & Range Method, and 
the Analysis of Variance (ANOVA) Method. 
The Measurement Systems Analysis Reference 
Manual is a publication put together by the 
Automotive Industry Action Group (AIAG) 
and  serves as a reference for Gage R&R 
methodology that has been sanctioned by the 
Chrysler Group LLC, Ford Motor Company,  
and General Motors Corporation Supplier 
Quality Requirements Task Force  
(MSA Workgroup, 2010). 

Coordinate measuring machines are a 
common measurement device used to secure 
measurements of high accuracy across various 
industries. They range in type from table-top 
bridge-type machines with touch type probes  
to much more advanced technology using  
hand-held devices and optical laser type probes.  
Rather than technically measuring component 
parts in the traditional sense, CMMs obtain 
discrete points or hits on a three-dimensional 
Cartesian plane and generate measurement data 
through algorithmic mathematical computation.

A number of researchers have made significant 
progress toward developing methodologies 
aimed at estimating measurement uncertainty 
that results in coordinate measurements, 



55particularly using contact-mode probes.  
Yet, considerable research remains to be 
performed to fully account for measurement 
uncertainty and to improve their estimation. For 
example, techniques to model and estimate task 
specific uncertainty for contact-probe coordinate  
measuring machines were developed by Wilhelm  
et al., (2001), who reported that for any task 
specific uncertainty method to gain universal 
acceptance, standardized inputs would be  
highly desirable, if not a requirement. In their  
investigation of measurement uncertainty  
estimation of CMMs in accordance with the  
Guide to the Expression of Uncertainty in  
Measurement (GUM), Fang and Sung (2005)  
noted that measurement uncertainties mainly  
come from the calibration of the CMM and  
temperature. For a measurement range of  
0mm to 400 mm, they estimated an expanded  
uncertainty of 3.4 µm with a coverage factor  
of 1.98 at a 95% confidence interval.   
Their further analysis showed that the  
measurement uncertainty can be reduced  
by using a high precision instrument, such as 
laser interferometer.

The principal factors that impact measurement 
uncertainty have been studied extensively.  
Barini et al. (2010) investigated the source  
and effects of differing uncertainty contributors 
by point-by-point sampling of complex surface 
measurements using tactile CMMs. By carrying 
out a four-factor (machine, probe, operator, 
and procedure), two-level randomized factorial 
experiment and choosing adequate process 
parameter settings, a subsequent decrease  
of the measurement uncertainty from 34 µm  
to 8 µm was observed. 

Other researchers have used other approaches. 
In their work, Phillips et al. (2010) utilized 
a computer simulation software approach to 
investigate the validation of CMM measurement 
uncertainty. All the measurement errors found 
in the physical measurements were well inside 
their corresponding uncertainty intervals. From 
their investigation, Phillips et al. suggested a 
well-documented list of reference value tests as 
a useful tool to employ before starting the more 
expensive aspect of real physical measurements 
of calibrated parts.

CASE STUDY BACKGROUND
Data for this study was collected using two 
separate CMMs; the first is located in the CMM 
Laboratory of the School of Engineering and 
Information Systems, Morehead State University 
and the second from a CMM Lab located in a 
Tier 1 Original Equipment Manufacturer (OEM) 
facility. Both machines were similar in design, 
utilizing a bridge type table design with Direct 
Computer Control (DCC) capability.  
The primary differences of the two machines 
were that they are manufactured by different 
companies and each functions with a different 
operating software. The machine used in the 
university laboratory was manufactured by 
Brown & Sharpe and is operated by PC•DMIS 
2014 software; while the second machine was 
manufactured by the Zeiss company and  
operated by Calypso 4.8 software.

As many controls as possible were maintained 
during the study to ensure a quality comparative 
analysis between the two machines. For 
example, the same participants were used 
to collect measurement data on each of the 
CMMs. Additionally, all data were collected by 
measuring the same three sample parts with each 
machine. The DCC mode was utilized on each 
machine in lieu of a third operator to provide 
baseline data.

METHODOLOGY
The overall methodology of this research is 
based on the American Automotive Industry 
standard requirement for Gauge R&R studies. 
One of the challenges faced by quality 
professionals who supply products to customers 
in the American Automotive Industry (AAI) 
is not only complying with an extensive list 
of customer specific requirements, but also 
complying with those requirements in the 
specific manner prescribed by the customer 
as well. An especially good example of this 
challenge is encountered when attempting to 
comply with customer requirements pertaining 
to MSAs and the documentation of the 
measurement variation present with each gage 
used to release product to the customer. 

While the core tools reference manuals contain 
good practices and methods this is not the 
same as being “best” method across the board 
in every instance. As the name implies these 
manuals were originally created as “reference” 
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guides, but over the years the AAI requirements 
have evolved to the point that these guides 
have changed from references to requirements 
for the entire automotive supply chain. This 
phenomenon in and of itself poses its own set 
of unique obstacles and challenges to those in 
the field of quality due to the fact that “not all 
measurements systems are created alike.” The 
result is a tendency to analyze a measurement 
system through the lens of the required method 
for the purpose of compliance to the requirement, 
rather than analyzing a measurement system with 
the intent of truly understanding the capability 
and uncertainty of the system itself. 

Rationale of the Four Factors Selected  
for Analysis
Dimensional type:  
The three separate dimensional measurement 
types selected are referred to in the CMM 
operator’s manual as ‘geometric features’. They 
were selected due to the way a CMM generates  
three-dimensional measurements differently  
than two-dimensional measurements. When  
three-dimensional objects are measured, probe 
radius compensation is made perpendicular to 
the surface of the object as opposed to the active 
work plane used in two- dimensional objects. 
Operation type:  
The decision between a manually operated CMM 
versus a DCC type is typically determined by the 
type of operation in a given organization. Most 
production-oriented environments choose a DCC 
type, while companies specializing in prototype 
development and reverse engineering are more 
likely to prefer a manual CMM (Meredith, 
1999). However this does not mean to imply  
that a CMM with DCC capability is always 
being utilized in DCC mode. DCC CMMs can 
still be operated in manual mode. 
Set-up type:  
The two different CMM setup types that are 
under investigation are those of manual setup 
and CAD setup. Both setup types are directly 
linked to a DCC operation type. The integration 
of advanced CAD inspection programs has 
provided yet another layer of part inspection 
versatility to the realm of metrology. Through 
the usage of CAD enhanced CMM software, it 
is now possible to graphically test and debug 
inspection routines before executing a new part 
program with the CMM (PC•DMIS, 2014).

Operator:  
With nearly all types of measurement system 
analysis, the operator(s) involved tend to 
contribute significantly towards the overall 
measurement variation in the system. 

Method One – Analysis of Variance ANOVA
An Analysis of Variance (ANOVA) was 
performed to determine the significance of 
impact of the four selected factors on overall 
measurement uncertainty associated with a 
CMM. This test was conducted with a 95% 
confidence level. When a statistical significance 
was discovered while comparing a set of three 
or more means, a post hoc Tukey Test was 
performed to determine which means were 
significantly different. 

Method Two – Gage Repeatability  
& Reproducibility
A series of Gage R&R studies were performed 
using the equations and methodology set forth by 
the MSA Reference Manual. The results of the 
Gage R&R studies determine the percentages of 
variance that each of the four categorical factors 
contribute towards the overall measurement 
uncertainty in this particular study. These 
equations are as follows 

Equation 1: 

 
 K1 = a compensation constant based on  
 the number of trials used. 

 Equation 1 was used to calculate  
 Repeatability / Equipment Variation (EV)

Equation 2:

 
 K2 is a compensation constant based  
 on the number of appraisers used. 

 n = parts     r = trials 

 Xdiff  is the difference between the greatest  
 and least Xbar of all trials and all parts  
 for each appraiser

 Equation 2 was used to calculate  
 Reproducibility / Appraiser Variation (AV).



57Equation 3:

 
 Equation 3 was used to calculate GRR  
 (combined Gage R & R).

Equation 4:

 
 K3 is a compensation constant based on the  
 number of parts used 

 Rp is the range of part averages

 Equation 4 was used to calculate the PV  
 (Part Variation).

Equation 5:

 
 Equation {5} was used to calculate TV  
 (Total Variation)

The following equations were used to calculate  
the percentages of AV, EV, & GRR.  
(The percentage of PV is of no consequence  
in this research since the part to part variation  
is not under investigation.)

Equation 6:

 

Equation 7:

 

Equation 8:

 

Method Three – Comparative Analysis
A statistical comparative analysis was performed  
using data collected from two separate CMMs. 
Data Collection Procedures:
Data was collected at the university lab over the  
course of several days.  The same participants  
were involved throughout the entire data  
collection process. The temperature in the lab  
was carefully monitored and measurements  
were only taken when the lab temperature was  
maintained within 20°C +/- 2°C in accordance  
to the universally accepted standards established  
by the NIST (Doiron, 2007).

The Gage R&R data were collected while  
operating the CMMs in different configurations.  
While collecting data using the CAD capability,  
the software was completely closed out and  
reopened in identical sequence for each iteration. 

While measuring the conic sections, it was  
necessary to calculate angular measurements due  
to the limited capabilities of one of the CMMs. 

Equation 9 was used to convert from linear into  
angular for the outer base angle of the cone.

Equation 9:

 
 θ represents the outer base angle  
 of the Cone.

 Diameter1 & Diameter2 are the diameters  
 of the upper and lower planes of the  
 conic section.

Since all raw data were in the form of different 
units of measure it was first necessary to 
normalize data before performing an ANOVA. 
Data were normalized according to each distinct 
dimension type.  Data normalization was  
performed using Equation 10. 

Equation 10:

 

RESULTS
After analyzing the data, the following findings 
were discovered, and the four factors being 
analyzed were then ranked according to their 
impact on the overall MSA.

The impact of each selected factor on the 
measurement system variation
Residuals plots were analyzed in connection 
with each factor (Figures 2-4) each of which 
demonstrate no indication of bias in any of the 
ANOVAs.  The histogram and normality plots 
show no skew or outliers, and the residuals 
appear normally distributed. The Residuals vs. 
Fits graphs all indicate that the residuals have 
a constant variance and the Residuals vs. Order 
plots show no apparent correlations between any 
of the data. 
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In addition to each ANOVA, a Tukey Pairwise 
Comparison of Means test, also known as 
Tukey’s Honestly Significant Difference test, 
was conducted when P values of the ANOVA 
were discovered below the risk value. A Tukey 
Test was used to reveal which means in a given 
data set differed significantly from the rest 
(Olleveant, 1999). 

Result 1a - Measurement Type.  
An analysis of the variation related to 3D 
measurement type when operating the CMM 
in manual mode revealed a notable amount of 
both EV and AV variation when compared to the 
variation encountered from the other factors. The 
cylinder consistently yielded the highest amount 
of both EV and AV variation. The cone ranked 

Table 1: ANOVA of Measurement Type

Source DF Seq SS Adj SS Adj MS F P

Appraiser 2 0.8262 0.8262 0.4131 3.12 0.048

Dimension Type 2 0.3626 0..3626 0.1813 1.37 0.258

Error 130 17.2324 17.2324 0.1326

Total 134 18.4212

second with the sphere displaying the least 
amount of variation. 

The first ANOVA was conducted on data relating 
to 3D measurement type. Because the P-value 
for the appraisers was determined to be below 
the alpha value of 0.05 (although only slightly 
at 0.048. (Table 1), it was determined that the 
difference in means between the appraisers in 
this particular study was statistically significant. 
All data was first analyzed and found to be 
normally distributed.

Figure 1 shows that the data collected by 
Appraisers 1 and 2 were significantly different 
from each other while measuring the different 
three dimensional shapes.

Figure 1. Tukey Test of Appraisers for Measurement Type

Tukey Simultaneous 95% CIs
Differences of Means for Measurement

3 - 2

3 - 1

2 -1

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Ap
pr

ai
se

r

If an interval does not contain zero, the corresponding means are significantly different.

Result 1b – Machine Operation Type.
 The second factor investigated was Machine 
Operation Type. The Gage R & R data reveals 
the presence of both EV and AV variation while 
in Manual Mode but not while in DCC mode. 

This finding was also supported by the ANOVA 
which demonstrated statistical significance for 
the variation between the two modes of operation 
as shown in Table 2.
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Table 2: ANOVA of Operation Type

Source DF Seq SS Adj SS Adj MS F P

Appraiser 2 0.1006 0.1006 0.0503 0.38 0.682

Dimension Type 1 1.4624 1.4624 1.4624 11.17 0.001

Error 176 23.0415 23.0415 0.1309

Total 179 24.6045

Figure 2. Four in One Residulas Plot for Measurement Type
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Table 3: ANOVA of Setup Type

Source DF Seq SS Adj SS Adj MS F P

Appraiser 2 0.0339 0.0339 0.0169 0.12 0.887

Dimension Type 1 0.2576 0.2576 0.2576 1.83 0.18

Error 86 12.1049 12.1049 0.1408

Total 89 12.3964

Result 1c – Machine Set-up Type. 
The third factor, Set-up Type, proved to be 
the least significant of each of the four factors 
analyzed. Very little if any variation was 
observed in both AV and EV for either set-up 

type. This produced a negligible GRR% overall.  
These results were supported by the ANOVA, as 
seen in Table 3.  The data reveal no presence of 
measurement noise when utilizing CAD capable 
software in both DCC and manual modes.
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Result 1d – Operator.
 The fourth factor investigated was variation 
attributable to machine operators. In order to 
determine the impact of this variation it was 
first necessary to examine the AV in connection 
with each of the other independent factors. As 

the data in Table 4 shows, Appraiser Variation 
is present in some configurations but not in all. 
As seen in Table 4, the two configurations with 
the least amount of appraiser variation were a) 
when measuring spherical objects, and b) when 
operating the CMM in DCC mode. 

Figure 4. Four in One Residulas Plot for Setup Type

Figure 3. Four in One Residulas Plot for Operation Type
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61Table 4: Summary of Gage R&R Results

Factor EV µ % EV AV µ % AV GRR µ % GRR

1a) 3D Measurement  / Sphere 0.015 0.21% 0.002 0.03% 0.015 0.21%

1b) 3D Measurement  / Cylinder 0.195 1.11% 0.131 0.75% 0.235 1.34%

1c) 3D Measurement  / Cone 0.058 0.50% 0.064 0.55% 0.086 0.74%

2a) Operation Type / Manual 0.105 0.83% 0.067 0.53% 0.124 0.99%

2b) Operation Type / DCC 0.000 0.00% 0.004 0.04% 0.004 0.04%

3a) Setup Type / Manual 0.006 0.21% 0.006 0.22% 0.009 0.31%

3b) Setup Type / CAD 0.005 0.16% 0.004 0.14% 0.006 0.21%

Table 5: Ranking of Individual Factors

Factors by Ranking Combined Average of Individual Factors

1) Measurement Type (0.15 + 0.195 + 0.058) ÷ 3 = 0.134

2) Operation Type (0.105 + 0.00) ÷ 2 = 0.0525 

3) Operator (0.002 + 0.131 + 0.064 + 0.067 + 0.004 + 0.006 + 0.004) ÷ 7 = 0.040

4) Setup Type (0.006 + 0.005) ÷ 2 = 0.006 

Figure 5. Image of CMM Located in  
University Laboratory

Figure 6. Image of CMM Located in Tier 1 
Industry Laboratory
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Factors Ranked by Impact  
(Result 2 – Ranking the factors)
After extracting the EV for each factor using 
the series of Gage R&R methodology, the grand 
mean of each individual component of EV was 
calculated. This data was then sorted in Table 
5 providing a ranking of the impact of each 
individual factor on the overall measurement 
uncertainty of the system. 

Comparative analysis  
of the two separate CMMs
Figures 5 and 6 are images taken of both 
individual CMMs used for the comparative 
analysis. The individual parts measured in 
the study can also be seen clearly on the table 
surface of the CMM in Figure 5.
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Table 6: Case Study Gage R & R Summary

Different CMMs EV µ % EV AV µ % AV GRR µ % GRR

1) Machine 1- MSU Laboratory 0.150 0.51% 0.096 0.33% 0.178 0.61%

2) Machine 2 - Industry Laboratory 0.094 0.32% 0.066 0.23% 0.115 0.39%

Table 7: Case Study Statistical Summary

Statistic Tier 1 OEM CMM University CMM

1) Mean Standard Deviation 0.104 µ 0.360 µ

2) Mean Range 0.386 µ 1.036 µ

For the purpose of conducting the comparative 
analysis, a few individual components were 
selected and then firmly secured to the table 
top surface of each CMM prior to securing 
measurements. The statistical data for 
comparative analysis are displayed in Tables 6 
and 7 below.

Tables 6 and 7 clearly demonstrate differing 
amounts of EV and AV data are present when 
identical parts are measured by the same 
operators on different CMMs of similar design. 
Additionally, both the GRR results as well as the 
statistical summary indicate a greater presence 
of measurement variation when using the CMM 
located in the university lab.

CONCLUSION
 This study has revealed the presence of varying 
degrees of measurement uncertainty while 
operating CMMs in different configurations. 
The extent of impact of this uncertainty for 
CMMs must be determined by the associated 
user.  It is noteworthy that this work revealed 
that differing amounts of equipment variation 
(EV) and appraiser variation (AV) are present 
when identical parts are measured by the same 
operators on different CMMs of similar design. 

The impact of each of the four individual factors 
on the overall measurement uncertainty was 
revealed in rank order from highest to lowest as: 
Measurement Type, Operator Type, Operator, 
and Set-up Type. Furthermore, a Comparative 
Analysis between the industry CMM and 
university CMM, based on both the Gage RR 
and ANOVA results, indicated a greater presence 
of measurement variation when using the 
university CMM.

While the methodology set forth in this study 
may not necessarily encompass all cases, it has 
proven effective to adequately perform an MSA 
on a CMM. The same result could be expected 
for future studies of similar complex multivariate 
measurement devices.
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