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Abstract. The aim of this paper is to assess whether the data-generation process of the GDP can be

interpreted by means of a nonlinear model instead of a linear one. We model the first differences of logarithmic

real GDP data with constant parameters for those European countries (France, Germany, Italy, U.K.,

Denmark, Sweden, and Norway) which have long-term time series. Since the linear autoregressive model is

rejected, an alternative nonlinear model has been specified: it turns out that the annual European GDPs can

adequately be described by means of a nonlinear model with constant parameters.
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1 Introduction

A nonnegligible number of studies on U.S. GNP time series have been carried out from a nonlinear point of

view [see e.g., Scheinkman and LeBaron (1989); Potter (1995); Terasvirta (1996)], while only a few analyses of

business-cycle data for Europe have adopted the same perspective [Frank, Gencay, and Stengos (1988);

Stevenson, Jones, and Manning (1992); Mizrach (1994)]. This is especially troublesome, since many scholars

have claimed that U.S. data may be atypical [Blanchard and Summers (1986)]. In discussing the U.S. real

per-capita GDP series, some authors argue that there has been a structural break after WWII, because a

dramatic change in the volatility of the series has occurred since 1947. For instance, Harvey (1985) finds that

there was a strong positive first-order autocorrelation function in the period before 1947, which was very

different from that of the subsequent period. In particular, Zarnowitz (1992, p. 215) lists eight reasons why
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volatility has changed, from economic policy to a more stable aggregate demand composition, from the

expansion of the service sector to government expenditure.

When discussing this issue, the econometric literature has developed two approaches: diffusion models

with stochastic volatility (Hull and White 1987), and ARCH models (Engle 1992). Nelson (1990) has shown

that the two models are not incompatible, since a GARCH process could be interpreted as an approximation

of the discrete-time version of the diffusion model. Univariate GARCH models make the conditional variance a

function of lagged endogenous and exogenous variables. Nelson (1991) pointed out several limitations of

GARCH models. He emphasized that they impose symmetry on the time series and rule out any nonlinear

behavior in the volatility, since they typically imply a linear AR equation. Actual time series usually show

asymmetric behavior and accelerator-like effects, which can be dealt with using nonlinear models: in this

paper we look for them.

On a more technical ground, when analyzing U.S. GNP data, Scheinkman and LeBaron (1989), De Long

and Summers (1986), and Durlauf (1989) either divided the sample into two subperiods (pre- and post-WWII),

or introduced a time varying residual. All of these models are linear by assumption. Unfortunately, statistical

tests do not reject the hypothesis of constancy of the autoregressive parameters, which should follow the

structural break. Since the supposed structural break is not supported by the tests, one may suspect that the

reduction in volatility may be the effect of an underlying nonlinearity: therefore, we aim to analyze if the

data-generation process and its change in volatility can be better interpreted by means of a nonlinear model

with constant parameters rather than by a linear model with changing parameters.

We aim to model the first differences of logarithmic real GDP data with constant parameters for those

European countries (France, Germany, Italy, U.K., Denmark, Sweden, and Norway) that have secular series. If

the linear autoregressive model is rejected, an alternative nonlinear model must be specified. Since there is a

volatility change for European countries, a nonlinear framework is needed to describe the asymmetric

behavior and the effects of different shocks on the series.

2 Linear Models and Parameter Stability Testing

In this section we adopt the conjecture that the DGP of real GDP is linear and subject to parameter changes.

Basically, after having identified the most satisfactory linear AR representation according to the AIC criteria,

we will verify if the variance of residuals, found for the U.S., is present also in the European data. Then we

will test if there are signs of parameter instability and look for nonlinear specifications.

We use first differences of real output in logs, y (Figures 1–7) or in levels (Figures 8–14), for France (NNP:

1901–1949; GNP: 1950–1989), Germany (NNP: 1850–1913, 1925–1938; West Germany: 1950–1969; GNP:

1970–1989), Italy (GNP: 1861–1989), U.K. (GNP: 1830–1989), Denmark (GNP: 1870–1914, 1921–1989), Sweden

(GDP: 1861–1989), and Norway (GDP: 1865–1939, 1946–1989). Table 1 reproduces some descriptive statistics

of the series. The data sources are Mitchell (1975) for periods up to 1969, and OECD 1992 for periods from

1969 onward.

The automatic truncation lag procedure yields the results shown in Table 2.

An AR representation adequately describes the DGP with the exception of Sweden, whose output growth

rate seems to follow a random walk (a collection of papers on the post-WWII growth performance of several

European countries may be found in Crafts and Toniolo (1996); for a longer run analysis see Maddison (1982);

Fuà (1981); Bergstrom and Vredin (1995); Federico (1994); Crouset (1993); Persson (1993); Fischer (1997);

Feinstein (1997).

We now analyze whether there is a drop in the volatility of output growth between pre- and post-WWII

years, similar to what has been found for the U.S. GDP series (Blanchard and Summers 1986; Zarnowitz 1992).

Table 3 shows an average decrease by 50% in volatility of standard deviations of y, but the Goldfeld and
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Figure 1
Differences of real output in logs: Germany.

Figure 2
Differences of real output in logs: Sweden.
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Figure 3
Differences of real output in logs: France.

Figure 4
Differences of real output in logs: Norway.
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Figure 5
Differences of real output in logs: Denmark.

Figure 6
Differences of real output in logs: Italy.
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Table 1
Rates of growth for different sample periods (data are given in percentages; parentheses
show standard deviations).

Country
(first year of
observation) Start–1939 1945–1989 Start–1989 Start–1914 1919–1939
U.K. (1831) 1.778 2.176 1.929 2.057 0.716

(3.726) (2.459) (3.504) (3.321) (4.956)
Italy (1862) 1.477 5.045 2.290 1.241 1.904

(4.075) (7.268) (6.346) (3.743) (4.712)
France (1902) 2.332 5.171 2.831 2.603 2.160

(5.953) (6.080) (7.713) (3.124) (7.281)
Germany (1851) 2.836 4.204 3.300 2.548 4.236

(4.963) (2.858) (4.398) (3.866) (8.610)
Denmark (1871) 3.043 3.623 2.902 3.046 3.034

(3.413) (4.385) (4.713) (3.128) (4.128)
Sweden (1862) 2.746 3.511 2.980 2.778 3.192

(5.498) (2.345) (4.569) (4.786) (6.373)
Norway (1866) 2.356 4.090 3.000 2.102 3.729

(3.718) (2.183) (3.332) (1.839) (5.633)

Table 2
Automatic truncation lag procedure.

U.K. yt = 0.01866+ 0.14838yt−1 + 0.12877 d1839 − 0.18325 d1840 − 0.11381 d1919−20

(8.03) (2.42) (5.22) (−7.07) (−6.31)

+ 0.10153 d1940 − 0.07181 d1944−45 − 0.05326 d1980 + ε̂t
(4.14) (−4.09) (−2.18)

σ̂ε = 0.02446, R2 = 0.6428, T = 158.
Italy yt = 0.01472− 0.19242yt−1 + 0.19078yt−2 + 0.12397yt−3 + 0.1858yt−4

(2.88) (−3.02) (2.71) (1.97) (3.15)

− 0.20708 d1943−45 + 0.39044 d1946−47 + ε̂t
(−5.20) (7.07)

σ̂ε = 0.03966, R2 = 0.6789, T = 124.
France yt = 0.01173+ 0.21619yt−1 + 0.16688yt−2 + 0.11459yt−4 − 0.2173 d1940−41

(2.46) (3.77) (2.90) (2.10) (−9.47)

− 0.18325 d1980 − 0.12828 d1944 + 0.14049 d1945 + 0.43155 d1946 + ε̂t
(−7.07) (−3.69) (3.88) (12.3)

σ̂ε = 0.03106, R2 = 0.8642, T = 73.
Germany yt = 0.01677+ 0.18853yt−1 + 0.26064yt−2 − 0.11215 d1931 + 0.14896 d1933 + ε̂t

(3.11) (2.18) (2.92) (−2.87) (3.66)

σ̂ε = 0.03784, R2 = 0.5183, T = 109.

Denmark yt = 0.02746+ 0.17843yt−1 − 0.16711yt−2 − 0.27469 d1940 + 0.21958 d1946 + ε̂t
(7.31) (2.77) (−2.65) (−9.00) (7.15)

σ̂ε = 0.03024, R2 = 0.6948, T = 108.
Sweden yt = 0.03262+ 0.15297 d1870 − 0.10555 d1875 + 0.09139 d1896

(8.03) (4.47) (−3.08) (2.67)

+ 0.10341 d1913 − 0.11205 d1917−18 − 0.12289 d1921−22 − 0.13289 d1931 + ε̂t
(3.02) (−4.61) (−5.05) (−3.88)

σ̂ε = 0.0341, R2 = 0.4736, T = 128.
Norway yt = 0.03593− 0.13682yt−1 − 0.10815 d1917−18 + 0.11678 d1919

(14.32) (−3.94) (−6.59) (5.06)

− 0.12888 d1921 + 0.57552 d1930 + ε̂t
(−5.62) (25.05)

σ̂ε = 0.0228, R2 = 0.9013, T = 115.
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Figure 7
Differences of real output in logs: United Kingdom.

Figure 8
Real output in levels: Germany.

Quandt test (Table 4) shows that there are signs of heteroskedasticity for all the countries but Denmark.

Parameter constancy is tested using the method of Lin and Terasvirta (1994): this test rejects the hypothesis of

structural instability, except for Italy, as the intercept is concerned (which we interpret as owing to the late

Italian economic take-off, dated around 1897), and Norway, as the slope changes over time (owing to a

change in the national accounting procedure in 1930).

Since the hypothesis of parameter constancy cannot be rejected, the source of the volatility change could

not be due to a structural break of the coefficients, but must lie elsewhere: we suspect that linear models are

misspecified (all of the models reject the hypothesis of identically independent distributed residuals according

to the BDS test [Brock, Dechert, and Sheinkman 1987]).
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Figure 9
Real output in levels: Sweden.

Figure 10
Real output in levels: France.
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Figure 11
Real output in levels: Norway.

Figure 12
Real output in levels: Denmark.
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Figure 13
Real output in levels: Italy.

Figure 14
Real output in levels: United Kingdom.

Table 3
Volatility of output growth.

Country σ1 (Pre-WWII) σ2 (Post-WWII) Distribution p-Value
U.K. 2.682 1.895 F (102, 40) 0.73
Italy 3.996 2.295 F (68, 35) 0.03
France 4.33 1.812 F (18, 38) 0
Germany 4.374 2.253 F (67, 34) 0
Denmark 2.963 2.667 F (54, 39) 24.74
Sweden 3.95 1.917 F (67, 41) 0
Norway 2.375 1.67 F (66, 40) 0.91
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Table 4
Goldfeld and Quandt tests.

Country Distribution p-Value, p-Value, p-Value,
Slope and Intercept Slope Intercept

U.K. F (2, 148) 54.62
Italy F (5, 112) 1.66 70.99 2.36
France F (4, 61) 13.46
Germany F (3, 101) 48.87
Denmark F (3, 100) 10.51
Sweden F (2, 116) 51.84
Norway F (2, 107) 0.03 1.41 76.89

The rejection of no ARCH may signify nonconstant conditional variance, as well as a nonlinear conditional

mean; therefore, there is a possibility that what looks like a structural change is due to nonlinearity, which can

be modeled with a constant-parameter nonlinear model.

3 Nonlinearity of the Series

In this section, we assume that if the series are nonlinear they can be characterized by a smooth-transition

autoregressive (STAR) model (Tong 1990; Granger and Terasvirta 1993).1

A STAR model is an AR model whose local dynamics depend on lagged values of the series—i.e., the

behavior of the model during a recession can be different from the behavior during an expansion—as well as

the distance from the transition values. The volatility change can therefore be attributed to a change in regime

with constant parameters, rather than to parameter instability (which is not supported by the tests reviewed in

Section 2).

The STAR model is defined as:

yt = π ′wt + (θwt )F (yt−1)+ ut (1)

where

wt = (1, yt−1, . . . , yt−p),

π = (π0, π1, . . . , πp),

θ = (θ0, θ1, . . . , θp), and

ut nid(0, σ 2).

The transition function defines the type of the STAR model; in the case of logistic STAR (LSTAR), it is:

F (yt−d ) = 1+ exp[−γ (yt−d − c)]−1, (2)

where γ > 0. For an exponential STAR (ESTAR) model, the transition function is:

F (yt−d ) = 1− exp[−γ (yt−d − c)]2. (3)

Equations (2) and (3) represent nonlinear autoregressive models whose local dynamics change with yt−d . In

particular, in an LSTAR model, local dynamics in the case of a recession (low values of yt−d ) may differ from

1We choose the STAR models since they are widely used in the nonlinear empirical literature: see, e.g., Granger and Terasvirta (1993) and
Semmler (1994). Moreover, they are quite simple to identify, and their dynamic properties are very rich.
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an expansion, while in an ESTAR model, the dynamic behavior differs depending on (1) how close the system

is to c, and (2) the value of c itself. If the transitions are generated by deviations of the transition variable from

its linear trend rather than from a fixed value c, the model takes the form of a STAR-deviation (STAR-D) model.

One possibility is to use lagged fitted residuals from the linear part of Equation 1 as the transition variable,

yt = yt−d − πwt−d . (4)

Then, depending upon the form of the transition function, one could have a logistic or exponential STAR-D

model.

To identify a STAR model, after having identified a linear AR model, we will test it against a STAR model; if

linearity is rejected, we will determine the unknown delay parameter, d . The following steps consist of

choosing between logistic and exponential STAR models, and specifying the lag structure of the selected

model.

We use the AR models of Section 2 as a basis for linearity testing. To test STAR against linearity, we follow

Terasvirta (1994) using the auxiliary regression:

yt = β1wt + β2wt yt−d + β3wt y
2
t−d + β4wt y

3
t−d + vt , (5)

β1 = (β10, . . . , β1p)

βj = (βj1, . . . , βjp) j = 2, 3, 4

where

Evt = 0 var(vt ) = σ 2
v cov(vt , vs) = 0 s 6= t .

The linearity hypothesis is H0 : β2 = β3 = β4 = 0. When H0 holds, under stationarity and assuming the

existence of the eighth moments, the χ2 statistic has an asymptotic distribution χ2(3p). The choice between

ESTAR and LSTAR is made using Equation 4: first test H01: β4 = 0, then pass to H02: β3 = 0 | β4 = 0, and

H03: β2 = 0 | β3 = β4 = 0. The family model will be chosen on the p-value of the tests in the sequence: if the

p-value of the test H02 is the smallest of the three, we will select ESTAR; otherwise we choose LSTAR.

The results of the linearity tests of the first differences of the logs of output based on the models of

Section 2 appear in Table 5. Linearity is strongly rejected, and ESTAR models are the proper choice for every

country but Denmark and Norway, whose DGPs are best described by an LSTAR model.

The parameters of the models are estimated using nonlinear least squares. Their values are shown in

Table 6.

The residual variance of the STAR models is, on average, only 70% of the corresponding AR models, while

R2 has improved by almost 12%. There is no trace of ARCH in the residuals, which cannot be considered

nonnormal. Table 7 shows the BDS test for remaining nonlinearities: it indicates that the STAR models provide

an adequate description of the nonlinearity in the series. Moreover, the STAR model parameters are constant,

since they pass the heteroskedasticity test at 1%, with the exception of Germany (see Table 8).

We evaluate the forecast performance, based on the mean absolute error, for the sample 1960–1989 of AR,

STAR, and random-walk models in Sections 2 and 3.2 We use the forecast analysis as a further test to

discriminate between the AR and the STAR models. Table 9 presents the main results.

2We performed this test to contend with the problem of overfitting the data. Table 10 reports the results of the one-step ahead forecast.
Forecasts are obtained by estimating the model up to the t th observation, and forecasting the t th + 1 value. Such a procedure is repeated 30
times for each country. The statistical value we obtain is the mean absolute error (MAE),

1

30

30∑
t=1

|et |,

where et is the one-step ahead forecast error from 1960–1989.
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Table 5
Linearity tests.

Country Hypothesis Distribution p-Value p-Value p-Value p-Value p-Value
d = 1 d= 2 d= 3 d= 4 d= 5

U.K. H0 F (6, 103) 4.85 75.6 26.9 26.63 0.96
H01 F (2, 147) 1.65 34.71
H02 F (2, 145) 17.88 0.14
H03 F (2, 143) 57.10 44.17

Italy H0 F (15, 101) 1.19 5.64 12.13 64.98 42.3
H01 F (5, 111) 27.41
H02 F (5, 106) 2.22
H03 F (5, 101) 34.71

France H0 F (12, 51) 5.39 28.34 0.15 8.75 1.13
H01 F (4, 59) 1.42 2.97
H02 F (4, 55) 0.20 5.68
H03 F (4, 51) 50.83 17.48

Germany H0 F (9, 92) 0.08 24.02 19.68 60.53 15.26
H01 F (3, 98) 14.68
H02 F (3, 95) 0.18
H03 F (3, 92) 4.41

Denmark H0 F (9, 92) 98.54 1.46 53.45 2.61 8.61
H01 F (3, 98) 5.10 15.37
H02 F (3, 95) 6.63 0.97
H03 F (3, 92) 12.63 50.52

Sweden H0 F (3, 116) 8.22 44.94 52.58 4.29 86.55
H01 F (1, 118) 66.43
H02 F (1, 117) 0.55
H03 F (1, 116) 61.31

Norway H0 F (6, 101) 0.02 0.08 0.12 2.47 0.92
H01 F (2, 105) 0 0 0.81 2.07 10.18
H02 F (2, 103) 9.7 73.56 0.44 36.15 55.17
H03 F (2, 101) 75.07 31.62 42.74 9.29 0.38

With the possible exception of the U.K., the nonlinear models perform better than the linear ones on

average by 30%.

4 Results and Dynamic Behavior

In this section, we first discuss the interpretation of the ESTAR models and then that of the LSTAR models,

emphasizing the dynamic behavior of the systems.

Notice that since the estimates of the location parameters, c, of the ESTAR models are negative and

different from zero (with the exception of Italy), local dynamics are asymmetric about zero with expansions

longer than contractions. The dynamics of the ESTAR model for the U.K., Germany, and Sweden, and of the

LSTAR model for Norway, are locally stationary everywhere. Since these models have a regime switching in c,

different shocks will have different effects: a small shock in the neighborhood of c may modify the

steady-state growth rate, but shocks of the same size may have no effect on it if the system is far from the

threshold. On the other side, a large shock, or a sequence of small shocks with the same sign, may modify the

growth rate. The system behaves differently depending on the size of the shocks and/or its past realization:

i.e., there is path dependency. On the policy ground, these results suggest that policy has to be case-oriented,

since the behavior of the system is affected by the size and the timing of the shock and is therefore dependent

on history (Gallegati 1993).

Italy and Denmark are two peculiar cases. As Denmark is concerned, the roots of the mid-regime are

stationary; on the other hand, the outer regime contains an explosive root with a period of five years. Because

this root induces a cycle, the process tends to return toward the mid-regime where it is locally stationary after

first swinging out. Therefore, if the shocks to the economy remain small, the fluctuations in output are very
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Table 6
Nonlinear models.

U.K. yt = 0.02974− 0.14256yt−1 + 0.12806 d1839 − 0.20328 d1840 − 0.10193 d1919−20

(5.54) (−0.97) (5.29) (−7.43) (−5.53)

+ 0.1016 d1940 − 0.06549 d1944−45 − 0.05282 d1980

(4.22) (−3.73) (−2.18)

+
(

0.47705yt−1 − 0.01834
(2.68) (−2.85)

)[
1− e

−3319.26
(1.31)

(
yt−5−0.02155

(−6.23)

)2]
+ ε̂t

σ̂ε = 0.023966, R2 = 0.6693, T = 158.
Italy yt = 0.02744− 4.16519yt−1 − 0.43743yt−2 + 0.31629yt−3 + 0.05994yt−4

(1.82) (−2.20) (−1.31) (1.86) (0.26)

− 0.21098 d1943−45 + 0.39443 d1946

(−7.74) (3.73)

+
(

3.95714yt−1 + 0.67385yt−2 − 0.21602yt−3 + 0.12510yt−4 − 0.00917
(2.09) (1.91) (−1.09) (0.51) (−0.55)

)[
1− e

−4064.42
(1.93)

(
yt−1+0.00018

(−0.04)

)2]
+ εt

σ̂ε = 0.03844, R2 = 0.7171, T = 124.
France yt = 0.02823+ 1.03759yt−1 − 0.54493yt−2

(3.30) (4.98) (−2.51)

− 0.26434 d1940−41 − 0.12713 d1944 + 0.09708 d1945 + 0.48413 d1946 − 0.05282 d1980

(−11.75) (−4.03) (3.69) (14.54) (−2.18)

+
( −0.53924yt−1 + 0.98959yt−2 − 0.01904

(−4.66) (4.16) (−1.75)

)[
1− e

−1130.68
(2.59)

(
yt−3+0.0532

(6.23)

)2]
+ ε̂t

σ̂ε = 0.02739, R2 = 0.9022, T = 73.
Germany yt = 0.01755+ 0.59247yt−1 − 0.07575yt−2 − 0.09948 d1931 + 0.15049 d1933

(1.83) (2.29) (−0.44) (−2.47) (3.69)

+
( −0.53924yt−1 + 0.62073yt−2 − 0.00982

(−1.60) (2.25) (−0.52)

)[
1− e

−447.83
(1.11) ε̂

2
t−1

]
+ ε̂t

σ̂ε = 0.03711, R2 = 0.5590, T = 109.
Denmark yt = 0.03612− 0.31486yt−1 − 0.6996yt−2 − 0.27974 d1940 + 0.21516 d1946

(2.29) (−1.00) (0.35) (−9.13) (7.01)

+
(

0.51782yt−1 − 0.32606yt−2 − 0.00477
(1.61) (−1.47) (−0.28)

)[
1− e

−2098.65
(0.07)

(
yt−2 + 0.0528

(2.14)

)]−1

+ ε̂t

σ̂ε = 0.03019, R2 = 0.7105, T = 108.
Sweden yt = 0.02605+ 0.11087yt−1 + 0.15466 d1870 − 0.09961 d1875 + 0.09167 d1896

(5.31) (0.12) (4.56) (−2.97) (2.68)

+ 0.11022 d1913 − 0.11799 d1917−18 − 0.15568 d1921−22 − 0.12919 d1931

(3.26) (−4.31) (−4.31) (−3.86)

+
( −1.14848yt−1 + 0.15146

(−0.41) (0.46)

)[
1− e

−38.24
(2.31)

(
y4 + 0.02131

(1.98)

)2]
+ ε̂t

σ̂ε = 0.03324, R2 = 0.6734, T = 128.
Norway yt = 0.02174+ 0.01053yt−1 − 0.10192 d1917−18 + 0.0858 d1919

(3.87) (0.10) (−6.51) (3.70)

− 0.13607 d1921 + 0.57580 d1930

(−6.35) (26.29)

+
( −0.42626yt−1 + 0.03908

(−2.04) (3.18)

)[
1+ e

−124.68
(1.22) ε̂

2
t−1

]1

+ ε̂t

σ̂ε = 0.01944, R2 = 0.9308, T = 115.

small as well. Since the mid-regime is stationary, the cycle dies out when the output growth returns to

mid-regime again.

Self-sustained oscillations have been found for Italy. The Italian ESTAR model contains unstable roots for the

inner regime and stable roots for the outer one. If the system explodes leaving the inner regime, when it goes

to the other one, it is pushed back because the roots are stable, and the cycle can start again in a chaotic way.

The above results demonstrate that the annual European GDP can adequately be described by means of a

nonlinear model with constant parameters.
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Table 7
BDS tests.

Countryb m = 42 m = 43 m = 4
U.K. j = 6 1.6335 1.1180 0.8398

j = 8 2.1339 1.7018 1.2028
Italy j = 6 0.5449 0.8475 0.8733

j = 8 0.4012 0.4945 0.4905
France j = 6 0.0393 1.051 1.557

j = 8 0.3411 1.4913 1.611
Germany j = 6 2.2485 1.867 1.6433

j = 8 2.0529 1.4446 1.3434
Denmark j = 6 −1.7412 −1.3292 −1.0274

j = 8 −1.5972 −1.3172 −1.0449
Sweden j − 6 0.2794 0.0054 0.0822

j = 8 0.5077 −0.4898 −1.2087
Norway j = 6 −1.9517 −0.83501 −0.23196

j = 8 −1.8824 −0.7727 −0.5629
b. Critical value at 5% = 1.96.

Table 8
Volatility of output growth.

Country σ1 (Pre-WWII) σ2 (Post-WWII) Distribution p-Value
U.K. 2.793 2.153 F (91, 31) 5.09
Italy 3.827 2.625 F (59, 26) 1.86
Germany 4.374 2.253 F (62, 27) 0.06
Denmark 3.007 3.17 F (47, 33) 37.96
Sweden 3.825 2.699 F (60, 30) 1.98
Norway 2.206 1.867 F (62, 32) 30.81

Table 9
Forecast analysis.

Country Nonlinear Model Random Walk Linear Model
U.K. 1.70e-02 1.91e-02 1.36e-02
Italy 2.41e-02 1.97e-02 2.50e-02
France 1.25e-02 1.28e-02 1.33e-02
Germany 1.73e-02 2.07e-02 1.83e-02
Denmark 1.91e-02 2.26e-02 2.01e-02
Sweden 1.35e-02 1.55e-02 1.47e-02
Norway 9.14e-03 1.75e-02 1.75e-02

5 Conclusions

In modeling the logarithmic first differences of the real income of some European countries, we have assumed

a unit root in the levels series since the linearity test forming the core of the specifications technique of STAR

models is not available if the series is trending.

The results suggest that the effect of random shocks on output is asymmetric and nonlinear, and the linear

AR representation is not adequate. Since the detrended series are nonlinear as well, two caveats are in order.

First, the linear equations used for testing the unit-root hypothesis against trend stationarity may be

misspecified. Second, the permanent versus transitory nature of the shocks loses its meaning: it is the size and

the timing that make the difference.

The univariate nature of the STAR models makes them purely descriptive; nevertheless, the implications for

econometric and economy modeling are very strong since linearity, rather than being an approximation of the

real world, may generate deep misunderstanding and a bad guide for economic policy.
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