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Abstract. The asymmetric response of conditional variances to positive versus negative news has been

traditionally modeled with threshold specifications that allow only two possible regimes: low or high volatility.

In this paper, the possibility of intermediate regimes is considered and modeled with the introduction of a

smooth-transition mechanism in a GARCH specification. One important property of this model is that it permits

an on-off ARCH effect, in which a time series can switch from a process with constant variance to a process

with time-varying variance. On testing for the existence of a smooth-transition mechanism, there are nuisance

parameters that are not identified under the null hypothesis. Nevertheless, it is possible to construct a

Lagrange-multiplier test that is χ2
p -distributed. A Monte Carlo simulation shows that the test has very good size

and good power. A smooth-transition GARCH specification is tested and estimated with stock returns and

exchange-rate data. While a threshold model is preferred for stock returns, a smooth-transition model is more

likely for exchange rates.
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1 Introduction

A significant feature encountered in the modeling of financial data is the asymmetric response of the volatility
process to unanticipated shocks. It is found that financial markets become more volatile in response to
negative shocks than to positive shocks. While the economic reasons behind this behavior are not well
understood (Black 1976; Christie 1982; Schwert 1990), the econometric modeling of this asymmetry, known as
the leverage effect, has produced quite a number of ARCH models (see Nelson 1990; Glosten, Jagannathan,
and Runkle, or GJR 1993; Zakoian 1994; Engle 1990; Engle and Ng 1993; Ding, Granger, and Engle, or DGE
1993).

The differences among these models reside in the behavior of the news-impact curve (Engle and Ng 1993).
This curve relates past innovations (news), εt−1, to current volatility, and may have either different slopes for
positive and negative εt−1 values, or the curve minimum may be shifted toward the positive εt−1 values.
Models with different slopes are found in the works of Nelson (1990), Glosten, Jagannathan, and Runkle
(1993), Zakoian (1994), and Ding, Granger, and Engle (1993). News-impact curves with a shifted minimum are
found in models by Engle (1990) and Engle and Ng (1993).
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However, the common characteristic shared by all of these models is the existence of only two regimes:
low and high volatilities, which are triggered by positive and negative shocks, respectively. In this sense, all
are threshold models where the threshold is known and is equal to zero. Furthermore, these models are
habitually applied to stock returns. Recent articles by Liu, Li, and Li (1997) and Li and Li (1996) have
considered ARCH specifications with multiple thresholds, but in their empirical applications to stock returns
there is only one threshold and it is equal to zero.

This paper generalizes the modeling of asymmetry in variance with the introduction of a smooth-transition
specification for conditional variances. In addition, it expands the application of asymmetric models to
exchange-rate data. The smooth transition is an extension of the two-regime variance, since it allows
intermediate states or regimes. It also nests a threshold specification, since for certain parameter values,
smooth-transition models collapse to threshold models.

In a closely related literature, Markov switching models deal with the changes in regime in GARCH
specifications. Articles by Hamilton and Susmel (1994), Cai (1994), and Dueker (1997) discuss how the
conditional variances may come from a discrete number of regimes with the transition between regimes
governed by an unobserved Markov chain. Theoretically, the number of regimes or states can be large, but
practical considerations require a reduced number of states. In addition, there is a probability-transition matrix
that must be estimated. The framework of the present paper is very different from that of Markov-switching
models. In the context of smooth-transition models, I use the word regime with a different meaning from that
of a Markov model. I specify a transition function that is continuous and may exhibit different degrees of
smoothness. Because this function is continuous, we may talk of a continuum of regimes where the
probability of jumping from one regime to another is one. The degree of smoothness also controls the
number of regimes. A sharp transition function indicates two regimes, high versus low volatility, whereas a
smoother transition function allows for other, intermediate regimes. The moving among regimes is dictated by
an observable transition variable that belongs to the history of the process.

Testing for the existence of a smooth-transition mechanism in GARCH models presents similar problems to
those encountered in the smooth-transition autoregressive (STAR) models (Teräsvirta 1994; Lukkonen,
Saikkonen, and Teräsvirta 1988). There are several ways to formulate the null hypothesis of interest. This is
equivalent to saying that parameter identification is an issue. Under the null hypothesis, there are nuisance
parameters that are not identified; they exist only under the alternative. Since these parameters cannot be
estimated under the null hypothesis, the standard asymptotic theory does not apply. A comprehensive
discussion of these testing issues can be found in the work of Andrews and Ploberger (1994). Nevertheless, in
the context of this paper, the nonidentification problem can be resolved, and a standard Lagrange-multiplier
(LM) test can be constructed that is χ2-distributed. The solution depends on the specification of the
nonidentifiable parameters. If the specification is linear, it is possible to construct a standard LM test; if the
specification is nonlinear, the LM test has a nonstandard distribution.

Asymmetric models in variance have been applied only to stock returns. In this paper, I also consider
exchange-rate data. If a threshold model is estimated for exchange rates, the evidence of asymmetry is very
weak. This may explain why this sample has not been a popular choice for use with threshold models.
However, if a smooth-transition model is estimated, the evidence of asymmetry becomes stronger. It turns out
that the transition from a low- to a high-volatility regime is smooth, rejecting the threshold specification where
the transition is sharp.

The organization of this paper is as follows. In Section 2, I introduce the smooth-transition model and its
characteristics. In Section 3, I address the problem of testing for the existence of a smooth-transition
mechanism. In Section 4, I offer an application to stock returns and exchange rates, and in Section 5, I
conclude and summarize this work.

2 The Model

Let εt be a random variable, ψt−1 be the information set containing information up to time t − 1, and ht be the
conditional variance of εt . Suppose that εt is governed by

εt = ut

√
ht ,
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where ut is an i.i.d. sequence with zero mean and unit variance. I assume that εt is distributed conditionally
normal,

εt |ψt−1→ N (0,ht ).

The distributional assumption may be relaxed to a more general set of assumptions. If conditional normality
does not hold, a quasi-maximum-likelihood estimation (QMLE) framework will apply.

Definition 1. A smooth-transition GARCH(p, q,d ), called an ST-GARCH, is defined by the model

ht = ω +
p∑

i=1

α1iε
2
t−i +

(
p∑

i=1

α2iε
2
t−i

)
F (εt−d , γ )+

q∑
i=1

βiht−i, (1)

where

F (εt−d , γ ) = 1

1+ eγ εt−d
− 1

2
, γ > 0,

and where εt−d is the transition variable, d ≤ p, and γ is the smoothness parameter.

Considering that the F function is bounded, −1/2 < F (εt−d , γ ) < 1/2, sufficient conditions to ensure strictly
positive conditional variances are ω > 0, α1i ≥ 0, α1i ≥ 1

2 |α2i | for i = 1 . . . p, and βi ≥ 0 for i = 1 . . . q. Note
that α2i can be positive or negative, but since my interest is to capture higher volatility for negative news than
for positive news, the parameters α2i and γ need to have the same sign. I have assumed a positive γ , so
consequently α2i should also be positive.

In nonlinear models, it is customary to analyze dynamics by examining the stationarity properties of the
limiting processes. Following Bollerslev (1986) and Milhøj (1985), in the upper regime, F (−∞, γ ) = 1/2, and
the process is covariance stationary if and only if

p∑
i=1

α1i + 1

2

p∑
i=1

α2i +
q∑

i=1

βi < 1.

In the lower regime, F (+∞, γ ) = −1/2, and the process is covariance stationary if and only if

p∑
i=1

α1i − 1

2

p∑
i=1

α2i +
q∑

i=1

βi < 1.

Similar conditions can be found for any other intermediate regime: for instance, in the mid-regime
F (0, γ ) = 0, the process is covariance stationary if and only if

p∑
i=1

α1i +
q∑

i=1

βi < 1.

Note that because α2i > 0, covariance stationarity of the upper regime implies covariance stationarity in any
other regime, but not vice versa. If α2i < 0, the opposite is true, and covariance stationarity of the lower
regime implies covariance stationarity of the upper regime.

I will focus on the ST-GARCH(1,1,1) specification to facilitate the explanation of the relevant characteristics
of the smooth-transition model:

ht = ω + α1ε
2
t−1 + α2ε

2
t−1F (εt−1, γ )+ βht−1. (2)

2.1 The asymmetric response of ht

In Equation 2, εt−1 is the transition variable. The function F is monotonically decreasing,
−1/2 < F (εt−1, γ ) < 1/2 , with asymptotes F (−∞, γ ) = 1/2 and F (+∞, γ ) = −1/2. For
εt−1 ≤ 0, 0 ≤ F (εt−1, γ ) ≤ 1/2; for εt−1 ≥ 0,−1/2 < F (εt−1, γ ) ≤ 0. Consequently, for α2 > 0, negative news
produces higher volatility than positive news.
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2.2 Limiting processes of ht

In a smooth-transition GARCH model, the volatility process can switch between different regimes according to
the values of the function F . The switching is constrained by the following limiting processes. When
εt−1→+∞, the lower regime is

ht = ω +
(
α1 − 1

2
α2

)
ε2

t−1 + βht−1, (3)

with positive constraint (α1 − 1
2α2) ≥ 0.

When εt−1→−∞, the upper regime is

ht = ω +
(
α1 + 1

2
α2

)
ε2

t−1 + βht−1. (4)

Intermediate values of εt−1 give rise to a process for ht that is a mixture of the limiting regimes.
It is interesting to note that this smooth-transition specification of the conditional variance may produce an

on-off ARCH effect. If α1 = α2/2, the lower regime does not have time-varying conditional variances. Let us
call λ ≡ α1 − α2/2. By backward substitution in Equation 3,

ht = ω(1+ β + β2 + · · ·)+ λ(ε2
t−1 + βε2

t−2 + β2ε2
t−3 + · · ·);

when λ = 0, ht converges to a constant, and for β < 1,

ht = ω

1− β .

The process of εt is bouncing between a process with constant variance for positive news and a process with
time-varying conditional variance for negative news.

Figure 1 displays an ST-GARCH(1,1,1) process with an on-off ARCH effect. A sample path is simulated for a
sample size of 500 observations and parameters ω = 0.2, α1 = 0.2, α2 = 0.4, β = 0.6, and γ = 1.0. The upper
and lower regimes are also plotted.

2.3 Convergence to the threshold model
If the smoothness parameter, γ , is large, the function F becomes steep. In this case, the smooth-transition
model is not distinguishable from the threshold model, because there are only two possible regimes: one for
bad news (negative ε’s) and the other for good news (positive εs), with the threshold set to zero.

Figure 2 displays the shape of the function F for several values of γ .
The equivalence between an ST-GARCH with a large γ and a threshold GARCH model is readily seen using

the DGE model. I have chosen the DGE model because it encompasses a big array of ARCH specifications,
among them the GJR and the Zakoian models. Furthermore, in the empirical analysis carried out by Engle and
Ng (1993), the GJR model outperformed all the other models that take into account asymmetries in volatility.
The asymmetric power model of DGE with power equal to 2 is:

ht = ω + α(|εt−1| − δεt−1)
2 + βht−1

= ω + α(1+ δ2)ε2
t−1 − 2αδ|εt−1|εt−1 + βht−1.

For negative shocks, where εt−1 < 0,

DGE: ht = ω + α(1+ δ)2ε2
t−1 + βht−1,

ST-GARCH (large γ ): ht = ω + (α1 + 1
2α2)ε

2
t−1 + βht−1.

For positive shocks, where εt−1 > 0,

DGE : ht = ω + α(1− δ)2ε2
t−1 + βht−1,

ST-GARCH (large γ ): ht = ω + (α1 − 1
2α2)ε

2
t−1 + βht−1.
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Figure 1
The simulated ST-GARCH(1,1,1) and corresponding upper and lower regimes. Parameters: ω = 0.2, α1 = 0.2, α2 = 0.4, β = 0.6,
and γ = 1.0.
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Figure 2
The shape of the function F for three values of γ .

If the probability density function of εt is symmetric, the equivalence between the ST-GARCH model and the
threshold model is given by the restrictions

α1 = α(1+ δ2) and α2 = 4αδ,

which constitute the solution to the following system of equations:

α(1+ δ)2 = α1 + 1

2
α2,

α(1− δ)2 = α1 − 1

2
α2.

2.4 Moments and the news-impact curve
The unconditional variance of εt is obtained by applying unconditional expectation to ht in Equation 2. For
symmetric densities, E (ε2

t−1F (εt−1, γ )) = 0, because it is the expectation of an odd function.1 Consequently,
the asymmetry term does not affect the unconditional variance σ 2,

σ 2 = ω

1− α1 − β .

The persistence parameter is given by α1 + β, and the condition for εt to be covariance stationary is
α1 + β < 1, as in the GARCH(1,1) of Bollerslev (1986).

The unconditional fourth moment of εt is affected by the asymmetry term, since E (ε4
t−1F

2(εt−1, γ )) 6= 0
regardless of the symmetry or asymmetry of the conditional probability density function of εt . The
unconditional fourth moment is bounded by the unconditional fourth moment of the limiting processes. For
the lower regime in Equation 3,

E (ε4
t ) =

3ω2(1+ α1 − 0.5α2 + β)
(1− α1 + 0.5α2 − β)(1− β2 − 2(α1 − 0.5α2)β − 3(α1 − 0.5α2)2)

.

1For asymmetric densities, the following integral must be solved to obtain the unconditional variance:

Et−2

(
u2

t−1

1+ eγut−1
√

ht−1

)
.
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Figure 3
The upper and lower boundaries of a news-impact curve for an ST-GARCH (1,1,1) model.

For the upper regime in Equation 4,

E (ε4
t ) =

3ω2(1+ α1 + 0.5α2 + β)
(1− α1 − 0.5α2 − β)(1− β2 − 2(α1 + 0.5α2)β − 3(α1 + 0.5α2)2)

.

The news-impact curve for the ST-GARCH(1,1,1) model is:

ht = K + ε2
t−1(α1 + α2F (εt−1, γ )).

Figure 3 pictures the upper and lower boundaries corresponding to an ST-GARCH(1,1,1) model.

3 Testing

There are several ways to test for asymmetry in volatility in an ST-GARCH model. In Equation 1 there is no
asymmetry when H01 : γ = 0 or when H02 : α2i = 0 ∀i. If H01 is true, then α2i can take any value; or, when H02

is true, γ can take any value. In other words, the model is unidentified under the null hypothesis.
I study the behavior of an LM test for the two null hypotheses. Under H01, I derive an LM test that has a

standard distribution, while under H02 the LM test has a nonstandard distribution.

3.1 The LM test with a standard distribution
Consider an ST-GARCH(p, 0,d) model,

ht = ω +
p∑

i=1

α1iε
2
t−i +

(
p∑

i=1

α2iε
2
t−i

)
F (εt−d , γ ), (5)

for which the hypothesis of interest is H0 : γ = 0, H1 : γ > 0. Under conditional normality, the log-likelihood
of observation t is:

lt = −1

2
log ht − 1

2

ε2
t

ht
.

Under the null hypothesis, the parameter vector α2 = (α21, α22, . . . , α2p)
′ is unidentified. Following Davies

(1977, 1987), I keep α2 fixed. The parameter vector for which the score is calculated is θ ≡ (ω α11 . . . α1p γ )′,
and the score vector under the null hypothesis is:

S(θ, α2)|H0
= 1

2

∑
t

zt vt ,
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with

vt = ε2
t

h̃t

− 1, zt =
[

1

h̃t

ε2
t−1

h̃t

. . .
ε2

t−p

h̃t

−εt−d
∑

i α2iε
2
t−i

4h̃t

]′
= [z ′1t | z2t (α2)]

′,

where h̃t is the conditional variance under the null, and the partition of the (p + 2)× 1 vector zt is such that
z2t (α) is equal to the last element of zt .

The asymptotic variance of the score under the null hypothesis is:

V = E
(
S(θ, α2)S(θ, α2)

′) = 1

4
E

((∑
t

zt vt

)(∑
t

zt vt

)′)

= 1

2
E

(∑
t

zt z
′
t

)
,

where the last equality follows because S(θ, α2) is a Martingale difference, and under conditional normality
E (v2

t ) = 2. V can be consistently estimated by:

V̂ = 1

2

(∑
t ẑt ẑt

′

T

)
,

where T is the sample size.
A general form of the LM statistic for H0 : γ = 0 is:

LMγ (α2) = 1

2

(∑
t

v̂t ẑ
′
t

)(∑
t

ẑt ẑ
′
t

)−1 (∑
t

ẑt v̂t

)

= 1

2

(∑
t

v̂t ẑ2t

)2 {∑
t

ẑ 2
2t −

∑
t

ẑ2t ẑ
′
1t

(∑
t

ẑ1t ẑ
′
1t

)−1∑
t

ẑ1t ẑ2t

}−1

, (6)

where v̂t and ẑt are evaluated at the maximum-likelihood estimates under the null hypothesis.
Asymptotically, an equivalent test (Harvey 1990) to Equation 6 can be constructed using the following

auxiliary regression:

v̂t = ẑ ′1tβ1 + ẑ2t (α2)β2 + ut . (7)

The test is:

L̃Mγ (α2) = T R2 = T
SSR0 − SSR(α2)

SSR0
,

where R2 is the multiple coefficient of determination of the auxiliary regression in Equation 7, SSR0 is the sum
of the squared residuals in Equation 7 under the null H0 : γ = 0 (β2 = 0), and SSR(α2) is the sum of the
squared residuals under the alternative.

If α2 were known, the test would be distributed as a χ2 with one degree of freedom, but it is the
dependence on the unknown parameter α2 that in general may make the test not behave in the standard
fashion. Davies (1977) proposed the following test:

LMγ = sup
α2

L̃Mγ (α2) = T
SSR0 − infα2 SSR(α2)

SSR0
, (8)

which in general has an unknown distribution under the null hypothesis. However, in the present case, the
test of Equation 6 or the equivalent test of Equation 8 has a χ2-distribution. This standard behavior is seen
from the following auxiliary regression:

v̂t = ẑ ′1tβ1 + β2

∑
i

(
−α2i

εt−d

4

ε2
t−i

h̃t

)
+ ut = ẑ ′1tβ1 −

∑
i

φi

(
εt−d

4

ε2
t−i

h̃t

)
+ ut , (9)
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Table 1
Size of the LM test

Model under H0 Sample Nominal Size χ2
1

GARCH(1,1) Size 10% 5% 1% Mean Variance
ω = 0.1, α = 0.1, 500 10.20 4.55 0.08 0.98 1.80

β = 0.8 1,500 11.45 5.50 1.10 1.03 2.09
ω = 0.02, α = 0.03, 500 9.35 4.25 0.07 0.94 1.83

β = 0.95 1,500 10.75 5.25 1.10 1.02 1.98

Table 2
Power of the LM test

Rejection Frequencies (%)
Model under H1 Sample Nominal Size
ST-GARCH(1,1,1) Size 10% 5% 1%
ω = 0.1, α1 = 0.1, 500 32.35 21.95 7.05

α2 = 0.1, β = 0.8, γ = 1 1,500 70.00 57.60 34.10
ω = 0.02, α1 = 0.03, 500 31.95 21.00 7.85

α2 = 0.05, β = 0.95, γ = 20 1,500 78.55 67.95 45.95

where:

φi = β2α2i, i = 1 . . . p. (10)

If the Equation-10 restriction holds, the auxiliary regressions in Equations 7 and 9 are identical, and the
infα2 SSR is achieved when the least-squares estimation of Equation 9 is performed. Consequently, under the
null hypothesis H0 : γ = 0, the LM test of Equation 8 is χ2-distributed, with p degrees of freedom.

If the model contains a GARCH term, as in the model described by Equation 2, the testing becomes more
cumbersome because of the iterative term in the score, but the derived LM test is still distributed as χ2.
Equation (6) is still valid. For an ST-GARCH(1,1,1) model, the parameter vector is (ω α11 β γ ) with α21 fixed,
and the vector zt is equal to:

zt =
[

1

h̃t

+ β

h̃t

∂ht−1

∂ω

ε2
t−1

h̃t

+ β

h̃t

∂ht−1

∂α11

h̃t−1

h̃t

+ β

h̃t

∂ht−1

∂β
− α21

4

ε3
t−1

h̃t

+ β

h̃t

∂ht−1

∂γ

]′
.

In this case, the test LMγ in Equation 8 is distributed as a χ2, with one degree of freedom.
If the normality assumption is not satisfied, the LM test can be made robust to departures from normality,

as Bollerslev and Wooldridge have shown (1992).2

I perform a Monte Carlo experiment to assess the finite sample properties of the Equation-6 test. Tables 1
and 2 display the size and power of the test. The experiment consists of 2,000 replications.

In both tables, the parameters of the models have been chosen according to the estimated values reported
in Section 4. I have chosen two sample sizes, 500 and 1,500 observations. The empirical size of the test is
close to the nominal size for both samples. In the last two columns, I report the empirical mean and the
empirical variance of the test that is consistent with the theoretical mean (= 1) and variance (= 2) of a χ2 with
one degree of freedom. The test is also powerful: for 1,500 observations and 5% nominal size, the test rejects
the null hypothesis in 58% of the cases for a small γ = 1, and in 68% of the cases for a large γ = 20.

3.2 The LM test with nonstandard distribution
Consider the ST-GARCH(p, 0,d) model of Equation 5, where the hypothesis of interest is H0 : α2 = 0. Under
this null, the parameter γ is not identifiable. Proceeding as in the previous section, I keep γ fixed. The
parameter vector for which the score is calculated is θ ≡ (ω α11 . . . α1p α21 . . . α2p)

′. The score vector under

2Consider the vector θ partitioned as (θ1 γ ). The asymptotic variance-covariance matrix of the score for a general assumption on the conditional
distribution function and under the null hypothesis is:

Wγ γ ≡ Vγ γ − Hγ θ1 H−1
θ1θ1

Vθ1γ − Vγ θ1 H−1
θ1θ1

Hθ1γ + Hγ θ1 H−1
θ1θ1

Vθ1θ1 H−1
θ1θ1

Hθ1γ ,

where H is the Hessian matrix, and V is the outer product of the score.

Gloria González-Rivera 69



the null hypothesis is:

S(θ, γ )|H0
= 1

2

∑
t

zt vt ,

with

vt = ε2
t

h̃t

− 1

zt =
[

1

h̃t

ε2
t−1

h̃t

. . .
ε2

t−p

h̃t

ε2
t−1F (εt−d , γ )

h̃t

. . .
ε2

t−pF (εt−d , γ )

h̃t

]′
= [z ′1t | z2t (γ )

′]′,

where h̃t is the conditional variance under the null hypothesis, and the partition of the vector zt is such that
z2t (γ ) is equal to those elements of zt affected by the function F . Under conditional normality, the asymptotic
variance of the score under the null hypothesis is:

V = E
(
S(θ, γ )S(θ, γ )′

) = 1

2
E

(∑
t

zt z
′
t

)
.

A general form of the LM statistic for H0 : α2 = 0 is:

LMα2(γ ) =
1

2

(∑
t

v̂t ẑ
′
2t

){∑
t

ẑ2t ẑ
′
2t −

∑
t

ẑ2t ẑ
′
1t

(∑
t

ẑ1t ẑ
′
1t

)−1∑
t

ẑ1t ẑ
′
2t

}−1 (∑
t

v̂t ẑ2t

)
, (11)

where v̂t and ẑt are evaluated at the maximum-likelihood estimates under the null hypothesis.
If γ were known, the LM test of Equation 11 would be distributed as a χ2 with p degrees of freedom. In

general, γ is not known, and unfortunately in this case, the dependence on γ cannot be overcome as it can in
the case of the LM test in Equation 6. This is because the dependence of z2t (γ ) on γ is nonlinear. The
conventional maximum-likelihood theory does not apply when testing H0 : α2 = 0. Nevertheless, testing is still
possible. Davies (1977) suggested the following test:

LMα2 = sup
γ

LMα2(γ ), (12)

for which the probability distribution is unknown under the null hypothesis. However, Davies (1977)
provided a bound for tests of the type shown by Equation 12. Other alternative testing procedures can be
constructed, as discussed by Hansen (1996), who in a regression framework proposed finding the distribution
of Equation 12 via simulation. Lukkonen, Saikkonen, and Teräsvirta (1988) proposed a battery of LM tests
where the function F was linearized with a Taylor expansion to break the nonlinear dependence on the
parameter γ . Hagerud (1997) implemented a second-order Taylor expansion of the transition function around
zero, and developed the asymptotic test in Equation 11 for an ST-GARCH(1,1,1) model. It turns out that this
test is equivalent to the test in Equation 6 of Section 3.1. Hagerud (1997) also performed further Monte Carlo
simulations that showed that the test has very good size and good power against a wide array of alternative
models.

4 Applications

In this section, a smooth-transition GARCH model is estimated to financial data. The estimation is performed
with a quasi-maximum-likelihood (QML) procedure. Proving consistency and asymptotic normality of the
QML estimator for GARCH processes is not a trivial exercise. Results are only available under the assumption
of conditional normality, and only for a limited class of processes, mainly GARCH(1,1) (see Lumsdaine 1996;
Lee and Hansen 1994) and ARCH(p) (see Weiss 1986). Consistency and asymptotic normality of the QML
estimator for the ST-GARCH model may follow along the lines developed by Lumsdaine (1996). This exercise
is beyond the scope of this article and I defer it to future research.
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Table 3
Estimation of conditional variance. Exchange rates∗

ht = ω + α1ε
2
t−1 + α2ε

2
t−1F (εt−1, γ )+ βht−1

ht = ω + α(|εt−1| − δεt−1)
2 + βht−1

British Pound Deutsche Mark
Smooth Threshold Smooth Threshold

ca −0.057 −0.058 −0.062 −0.053
(t test)b (−3.2) (−3.3) (−3.3) (−3.4)
(Robust t) (−3.3) (−3.4) (−3.7) (−3.0)
ω 0.007 0.007 0.010 0.009

(2.8) (2.9) (2.3) (2.9)
(1.7) (1.7) (1.9) (1.9)

α1 | α 0.037 0.035 0.099 0.086
(3.9) (3.6) (5.1) (5.7)
(3.1) (2.5) (4.9) (4.9)

α2 0.036 — 0.135 —
(2.6) — (0.8) —
(1.5) — (0.7) —

γ | δ 14.269 0.273 0.862 0.153
(0.0) (2.5) (0.6) (2.8)
(0.0) (1.2) (0.5) (1.6)

β 0.943 0.942 0.886 0.895
(68.3) (70.4) (40.6) (54.0)
(49.4) (49.6) (37.1) (41.3)

Log likelihood −1196.8 −1196.8 −1258.6 −1259.7
Skewnessc −0.31 −0.31 0.17 0.18
Kurtosisc 4.43 4.42 3.61 3.65
Bera-Jarquec 124.3 124.3 25.2 29.6
Q(12)d 7.6 7.8 10.2 10.2
Robust LMe 1.00 2.43 5.96 4.51
p-value 0.317 0.119 0.014 0.033
∗See notes at the end of Table 4.

I estimate smooth-transition and threshold GARCH models to exchange rates and stock returns. The first
data set consists of returns to four exchange rates: the British pound (BP), the Deutsche mark (DM), the
Italian lira (LI), and the Swiss franc (SF).3 The data are opening bid prices of the foreign currency against the
U.S. dollar in the New York Foreign Exchange Market from March 1, 1980 to January 28, 1985, for a total of
1,245 daily observations. The second data set consists of 7,420 daily returns to the Standard & Poor 500
(S&P 500) index from July 2, 1962 to December 31, 1991, and 1,330 weekly returns to individual stocks—IBM,
NCR, and Unisys—from July 1962 to December 1987. These data have been extracted from the Center for
Research on Stock Prices (CRSP) tapes.

Table 3 contains the estimation results for the exchange rates. For every currency, I estimate and test a
smooth-transition GARCH model (ST) and a threshold model (TH). Since departures from conditional
normality are present (mainly due to leptokurtosis and a mild skewness), I present robust t -statistics for the
coefficient estimates and robust LM statistics of the form of Equation 6 to test for the existence of a
smooth-transition mechanism or threshold. With the exception of the BP, asymmetries in variance are present
for the other three currencies. For the BP, the robust LM tests for H0 : γ = 0 and H0 : δ = 0 fail to reject their
respective null hypothesis at the 5% significance level.

To decide if asymmetries are better modeled by an ST or a TH model, the following considerations should
be kept in mind. First, in a smooth-transition model, the t -statistic corresponding to α2 does not have the
standard Student’s t distribution for H0 : α2 = 0, because the parameter γ is not identified under the null
hypothesis. Second, the standard errors corresponding to the transition parameter γ are big, rendering small
t -statistics. This problem is more severe when γ is large. This is due to the structure of the model, mainly to

3This data has been kindly provided by Richard T. Baillie.
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Table 3 (cont.)
Estimation of conditional variance. Exchange rates∗

ht = ω + α1ε
2
t−1 + α2ε

2
t−1F (εt−1, γ )+ βht−1

ht = ω + α(|εt−1| − δεt−1)
2 + βht−1

Italian Lira Swiss Franc
Smooth Threshold Smooth Threshold

ca −0.082 −0.081 −0.059 −0.058
(t test)b (−5.0) (−5.0) (−2.9) (−2.9)
(Robust t) (−5.4) (−5.3) (−3.2) (−3.1)
ω 0.013 0.013 0.005 0.007

(3.1) (3.2) (1.6) (1.9)
(2.7) (2.8) (1.3) (1.8)

α1 | α 0.137 0.119 0.074 0.070
(6.2) (6.0) (4.9) (4.9)
(5.2) (5.2) (4.5) (4.7)

α2 0.189 — 0.174 —
(1.2) — (0.3) —
(1.2) — (0.2) —

γ | δ 0.980 0.183 0.404 0.161
(0.9) (3.8) (0.3) (2.3)
(0.7) (1.9) (0.2) (1.8)

β 0.839 0.850 0.919 0.917
(33.6) (35.3) (55.9) (55.4)
(29.4) (33.0) (51.5) (53.0)

Log likelihood −1130.7 −1131.7 −1350.3 −1351.8
Skewnessc 0.07 0.08 0.14 0.15
Kurtosisc 3.98 4.00 3.35 3.37
Bera-Jarquec 50.7 54.3 10.4 12.1
Q(12)d 8.9 9.0 9.1 9.2
Robust LMe 6.41 5.46 4.84 3.10
p-value 0.011 0.019 0.027 0.078
∗ See notes at the end of Table 4.

the behavior of the function F (εt−1, γ ). In an ST-GARCH(1,1,1) model,

∂ht

∂γ
= α2ε

2
t−1Fγ = −α2

ε3
t−1e

γ εt−1

(1+ eγ εt−1)2
.

This partial derivative is part of the score. In calculating the outer product of the score and the hessian, the
above element is squared, producing numbers that are close to zero, particularly for large γ . This effect is
reflected in a large variance for γ̂ . Consequently, on testing for the existence of a smooth-transition
mechanism, I rely on the LM test in Equation 6 that is explained in the previous section.

If a threshold model is to be fitted to the DM, LI, and SF, the robust t -statistic for H0 : δ = 0 fails to reject
the null hypothesis at the conventional significance levels. When a robust LM test is performed for H0, I fail to
reject the null at the 5% significance level for the SF, and I reject the null for the DM (p-value = 3.3%) and for
the LI (p-value = 1.9%). The estimation of a smooth-transition mechanism in variance offers different results.
The robust LM test in Equation 6 for H0 : γ = 0 rejects the null hypothesis for the DM, LI, and SF currencies.
Furthermore, comparing the LM tests for both models, the ST model offers larger values of the test than the
TH model. The strength of the rejection (smaller p-values of the LM tests) points toward a preference for
smooth-transition models. In fact, the values of the transition parameter γ are consistent with the preference
for ST models: these are 0.86 for the DM, 0.98 for the LI, and 0.40 for the SF. Figure 4 shows the transition
function F (εt−1, γ ) for these currencies. It is interesting to note that the condition α2 = 4αδ for convergence of
the ST model to the TH model is not satisfied. For the DM, 4αδ = 0.053 < 0.135 = α2; for the LI,
4αδ = 0.088 < 0.189 = α2; and for the SF, 4αδ = 0.045 < 0.174 = α2.

Table 5 displays the limiting processes of the four currencies. During periods of good news (lower regime,
εt > 0), the markets exhibit little time-varying volatility; in particular, for the SF, the lower regime is
characterized by a constant variance. However, when a negative shock hits the market (upper regime), the
markets become highly volatile and the conditional variance is characterized by an integrated GARCH(1,1)
process.
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(a)

(b)

(c)

Figure 4
The empirical transition function F (εt−1, γ ) for the Deutsche mark (a); the Italian lira (b); and the Swiss franc (c) exchange
rates.

Table 4 contains the estimation results for stock returns. For three individual stocks and for the S&P 500
index, asymmetries in variance are strong. In the threshold model, the robust t -statistics for H0 : δ = 0 reject
the null hypothesis at the conventional levels, except for NCR, in which the robust t -test is 1.6. On the other
hand, the robust LM test for H0 : δ = 0 strongly rejects the null for the three stocks and the index, with
p-values much smaller than 1%. If a smooth-transition mechanism is fitted, the robust LM test of Equation 6
for H0 : γ = 0 rejects the null hypothesis, but with larger p-values than the threshold model. The strength of
the rejection points toward a preference for a threshold model in stock returns. In fact, the values of the
transition parameter γ are large, ranging from 133.58 for IBM to 18.88 for Unisys. Figure 5 presents the
transition function F (εt−1, γ ) for these stocks and the S&P 500 index. For practical purposes, these plots show
that indeed, a threshold model is present.

Gloria González-Rivera 73



(a)

(b)

(c)

(d)

Figure 5
The empirical transition function F (εt−1, γ ) for the Standard & Poor 500 index (a); IBM stock (b); NCR stock (c); and Unisys
stock (d).
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Table 4
Estimation of conditional variance. Stock returns

ht = ω + α1ε
2
t−1 + α2ε

2
t−1F (εt−1, γ )+ βht−1

ht = ω + α(|εt−1| − δεt−1)
2 + βht−1

S&P 500 IBM
Smooth Threshold Smooth Threshold

ca 0.026 0.026 0.002 0.002
(t -test)b (2.9) (3.0) (3.1) (3.0)
(Robust t) (2.8) (2.9) (3.0) (3.0)
MA(1) 0.170 0.172 — —

(14.3) (14.5) — —
(13.9) (14.1) — —

ω 0.003 0.003 0.000 0.000
(5.0) (5.1) (2.0) (2.5)
(3.8) (4.0) (1.4) (2.0)

α1 | α 0.071 0.062 0.050 0.043
(25.6) (18.8) (5.5) (3.9)
(7.0) (6.8) (4.1) (2.6)

α2 0.082 — 0.076 —
(16.7) — (4.9) —
(4.9) — (3.1) —

γ | δ 39.43 0.318 133.58 0.498
(0.0) (10.1) (0.3) (3.9)
(0.0) (6.0) (0.2) (2.0)

β 0.929 0.931 0.943 0.933
(329.2) (339.3) (90.6) (70.3)
(104.3) (105.5) (58.3) (50.3)

Log likelihood −8379.3 −8378.9 2845.3 2845.8
Skewnessc −0.29 −0.29 0.00 0.00
Kurtosisc 6.50 6.40 5.38 5.41
Bera-Jarquec 3890.7 3885.5 313.6 321.7
Q(12)d 11.1 10.9 19.8 19.9
Robust LMe 5.29 37.19 5.76 9.21
p-value 0.0214 1.07E-09 0.016 0.002

The limiting processes of these series are shown in Table 5. The lower regime is characterized by almost no
time-varying volatility. In fact, for NCR and Unisys, the lower regime has a constant variance. However, in the
upper regime for all stocks and the S&P 500 index, the conditional variance is characterized by an integrated
GARCH(1,1) model.

5 Conclusions

The empirical literature on asymmetry in variance, best known as the leverage effect, has focused on models
with threshold with applications to stock returns. In this paper, I have introduced a smooth-transition GARCH
model (ST-GARCH). The asymmetric response of conditional variances to positive and negative news has
been modeled with a smooth-transition mechanism. The ST-GARCH model permits the existence of
intermediate regimes between high-volatility and low-volatility regimes. In this sense, it is a more complete
specification that also nests the threshold model, since for certain parameter values the smooth transition
collapses to the threshold model. An important characteristic of the ST-GARCH model is it allows for an on-off
ARCH effect. The switching between regimes is constrained by an upper regime and a lower regime. Under
certain conditions, the lower regime may be a process with a constant variance.

Testing for the existence of a smooth-transition mechanism presents some difficulties, since under the null
hypothesis there are nuisance parameters that are not identified. I have presented two types of LM tests. If the
null hypothesis involves the smoothness parameter, H0 : γ = 0, an LM test can be constructed that is
χ2-distributed with p degrees of freedom. If the identification problem had not existed, the LM test would
have been χ2-distributed with one degree of freedom. A Monte Carlo simulation shows that the test has very
good size and good power. If the null hypothesis involves the parameter vector α2, H0 : α2 = 0, the
corresponding LM test is not χ2-distributed, and simulation techniques or a Taylor expansion of the transition
function must be used to assess its probability density function.
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Table 4 (cont.)
Estimation of conditional variance. Stock returns

ht = ω + α1ε
2
t−1 + α2ε

2
t−1F (εt−1, γ )+ βht−1

ht = ω + α(|εt−1| − δεt−1)
2 + βht−1

NCR Unisys
Smooth Threshold Smooth Threshold

ca 0.002 0.002 0.002 0.000
(t test)b (2.5) (2.2) (2.1) (1.7)
(Robust t) (2.4) (2.1) (2.1) (0.3)
ω 0.000 0.000 0.000 0.000

(2.1) (2.5) (3.1) (3.3)
(1.9) (2.3) (2.2) (2.1)

α1 | α 0.037 0.032 0.073 0.063
(4.7) (2.9) (5.2) (4.6)
(3.1) (1.9) (2.8) (2.5)

α2 0.087 — 0.143 —
(2.1) — (1.5) —
(1.3) — (1.4) —

γ | δ 19.25 0.538 18.88 0.409
(1.1) (2.4) (0.8) (3.7)
(0.7) (1.6) (0.8) (2.3)

β 0.953 0.942 0.879 0.877
(87.5) (70.1) (34.8) (35.9)
(66.3) (54.4) (21.2) (19.8)

Log likelihood 2258.4 2258.2 2270.5 2269.0
Skewnessc 0.12 0.12 0.00 0.04
Kurtosisc 3.82 3.79 4.63 4.65
Bera-Jarquec 40.4 38.2 147.1 151.2
Q(12)d 19.1 19.5 9.20 9.60
Robust LMe 14.29 17.67 6.08 7.31
p-value .00015 .00002 0.0136 0.0068

ac is the constant in the mean equation.
bt statistics are in parenthesis. The first number is a nonrobust t test, and the
second is robust to departure from conditional normality of the standardized
residuals. The t statistics corresponding to α2 are not distributed as Student’s t .
Their distribution is unknown under H0 : α2 = 0.

cSkewness and kurtosis coefficients of the standardized residuals εt /
√

ht . Bera-
Jarque test for normality of εt /

√
ht , distributed as a χ2

2 .
dQ(12) is the Box-Pierce statistic for serial correlation in εt /

√
ht .

eIn the smooth-transition model, the robust LM test is for H0 : γ = 0. In the
threshold model, the robust LM test is for H0 : δ = 0. In both models, the robust
LM test is χ2

1 distributed.

Table 5
Lower (F = −1/2) and upper (F = 1/2) regimes

Lower Regime Upper Regime
α1 − 1

2α2 Persistence α1 + 1
2α2 Persistence

British Pound 0.02 0.96 0.06 1.00
Deutsche Mark 0.03 0.89 0.17 1.03
Italian Lira 0.04 0.88 0.20 1.04
Swiss Franc 0.00 — 0.16 1.08
S&P 500 0.03 0.96 0.11 1.04
IBM 0.01 0.95 0.09 1.03
NCR 0.00 — 0.08 1.03
Unisys 0.00 — 0.14 1.02

I have applied the estimation and testing of an ST-GARCH model to exchange rates and stock returns and
compared the likelihood of an ST-GARCH model versus a threshold model. In agreement with the present
literature, stock returns are better modeled with a threshold model. If a threshold model is estimated for
exchange rates, it will be easy to conclude that there is no asymmetric response of the variance in exchange
rates. However, it turns out that exchange rates are better modeled with a smooth-transition specification. The
transition function is very smooth, with the smoothness parameter between 0.4 and 1.0. Furthermore, the
on-off ARCH effect is present in some of the stocks and exchange rates.
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