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Abstract.  This paper examines the power properties of several linearity tests applied in time-series analysis.
The tests are the ones Lee et al. (1993) used in their Monte Carlo study. The main tool used for power
comparisons in this paper is the Pitman asymptotic relative efficiency. The results generally strengthen the
outcome of the simulations and complement some results in Lee et al. (1993). They also suggest guidelines for
designing Monte Carlo experiments for linearity tests.
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1 Introduction

With increasing interest in nonlinear time-series models, testing linearity against nonlinearity has become an
important issue in time-series analysis; see Granger and Terdsvirta (1993, chapter 6) for an overview. Recently,
Lee, White, and Granger (1993), henceforth LTWG, conducted a wide array of simulation experiments to study
the power properties of a few linearity tests against different types of nonlinearity, including bivariate
nonlinear models. Another study with a similar aim is Luukkonen, Saikkonen, and Terdsvirta (1988a). The
main purpose of the present paper is to demonstrate that most of the simulation results of LWG can be
explained or further illuminated using linearization and statistical theory, and, particularly, the concept of
Pitman asymptotic relative efficiency (ARE). This theory can also be used when designing new simulation
experiments. The plan of the paper is as follows. Section 2 briefly discusses most of the tests LWG considered
by means of auxiliary regressions. Section 3 discusses the concept of ARE. Section 4 considers power
properties of tests applied to Blockl models of LWG, and section 5 contains final remarks.
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2 Linearity Tests

I shall concentrate on the Blockl models in LWG. For this purpose, consider the following artificial model:

a2 + uy, u, ~ nid(0, o). (2.1)

k
Ye=dy+

J=1

If either z; = y,—1 (univariate models) or z; = x; (bivariate models), ay = 0, k = 2, then the F test of @, =0
is TSAY1 (Tsay, 1986) as in LWG. If 2 = 3 and the above holds except that I assume dy # 0, the F test of
a, = az = 0 is a Lagrange-multiplier-type test of linearity against the hypothesis that the true model is a single
hidden-layer artificial neural network model, as discussed in Terdsvirta, Lin, and Granger (1993). This test
often has better power than the test LWG preferred, which is based on the same neural network model.
However, when the true model is not a single hidden-layer neural network model, there are situations in
which the test in Terdsvirta et al. (1993) is less powerful than the test in LWG and is not even consistent. A
simple example is the model y; = ay ylf‘_l + u;, u; ~ nid(0, 02), because the test in Terisvirta et al. (1993) is
only based on the first three moments and cross-moments of lags of y,. In this paper, I nevertheless take that
test to represent the neural network (NN) test. The reason is that many nonlinear models simulated in LTWG
may at least locally in a neighborhood of the null of linearity be approximated by a model resembling
equation (2.1). As will be seen, comparing (2.1) to such a representation makes it possible to find an
explanation for the fact that the NN test sometimes seems to have better power than some other linearity tests.

Furthermore, if z; = f; where f; is the OLS fit of the linear model y, = ay,_y + u,, the F test of @, = 0, j > 2,
in equation (2.1), assuming dy = 0 is RESET (Ramsey, 1969). For Block1 models, f; = ay,_ (or f; = ax,_1), so
that f; can be replaced by y;_; (or xp). If & = 3, RESET thus coincides with the auxiliary regression version of
the NN test, except that ay = 0. The Keenan test (Keenan, 1985) is a special case of RESET such that & = 2,
and for Block1l models the test is thus identical to TSAY1. LWG, however, carry out RESET differently. In their
version, z; = y_1, 2] = ,B;w;, j=2,...,k in equation (2.1), where: w, = (3? ,,..., y* ) and ,B;wt is the t-th
element of the j-th principal component of W = (w, ..., w})'. For bivariate models, x; takes the place of y,_;.

Next, consider the auxiliary regression

Ve = aVi-1 + Cllh—y + Clith—1 Vi1 + Clalh—1Vi—2 + Clizly—1 Vi1 V-2 + Uz, ty ~ 0id(0, o). (2.2)

The x? (Lagrange multiplier, or LM) test of ¢; = ¢;; = ¢12 = ¢112 = 0 in equation (2.2) is WHITE3 of LWG. For
the origins of this test, see White (1987). The lagged errors are replaced by their estimates from the OLS
regression of ), on y,_;. Note that the test is not a pure linearity test, as the alternative also contains a
first-order moving average term. This explains the results for White tests in Table 5 of LWG for Modell of
Block2. Of the remaining tests, TSAY2 (another version of the test of Tsay, 1986) requires an auxiliary
regression with 16 regressors, 15 of which have zero coefficients under the null of linearity. These auxiliary
regressions form a starting point for considering and comparing the power of different tests.

3 Asymptotic Relative Efficiency

To introduce the concept of Pitman asymptotic relative efficiency (ARE), I consider two nonlinear models and
assume that one of them has generated the data. This model is characterized by the log-likelihood function

T
ara,¢) =Y q(a, ), (3.1)
=1

where aisa p x 1 and ¢ an s x 1 parameter vector, and 7 is the sample size. The other (misspecified or
T
inappropriate) model is characterized by the log-likelihood function pr(a, ) = Z pi(a, ¥), where ¥ is an

=1
r x 1 parameter vector. Generally, pr(a, ¢) # gr(a, ¥), but pr(a,0) = gr(a, 0). I want to test Hoy : ¥ =0
against Hyy : ¥ # 0, whereas the relevant null hypothesis is Hyg : ¢ = 0 against Hyy : ¢ 7# 0, because

equation (3.1) characterizes the true model. Consider a sequence of local altelrnatives ¢ =14/ 73,8 # 0, so that
the data are generated by a model with the log-likelihood function gy (a, §/Tz). Define

ky = [{8 pi(a, 0)/da} {8 p,(a,0)/dy) {9g:(a, 0)/d¢} ]
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with covariance matrix ¥ = E/_e,/_el’ =[2yl, i, j € {a, ¥, ¢}, where the partition conforms to that of k,. Then the
asymptotic distribution of the LM test of Hoy (LMyy) follows an asymptotic x? distribution with noncentrality
parameter Ay (a, §) = 3/2@-“2;3&.“2@-“5, where X, = X;; — EikZ;,jE/ej (see Saikkonen [1989] or
Luukkonen et al. [1988a]). On the other hand, the asymptotic distribution of the LM test of Hy, is a noncentral
xZ2 distribution with noncentrality parameter Ay(d, §) = §'Ey4..8. The asymptotic relative efficiency of LMy, is
the following ratio (Saikkonen, 1989):

Ay(a, 8)d(s, a, B)

AREy (a,8,a,B) = rg(a, 8)d(r,a, B)

(3.2)

In equation (3.2), d(h, a, B) is the noncentrality parameter of a noncentral x; distribution, such that the
1-p fractile of that distribution and the 1-« fractile of the (central) le distribution coincide. Values of
d(h, a, B) are tabulated, for example, in Pearson and Hartley (1972, Table 25). If r = s, equation (3.2) does
not depend on d. If r = s =1, ARE is also independent of 8. If A, (a, §) = 0, the asymptotic power of LM,
against the local alternative equals the size of the test. It is worth noting already that the McLeod-Li test that
LWG considered has this property for all models included in Block1, as is clear from Luukkonen et al. (1988a).

4 Interpreting Simulation Results

I shall now consider the simulation results of Blockl models in LWG using the auxiliary regression
interpretation of TSAY1, TSAY2, the NN test, RESET, and WHITE3. The nonlinear models in Block2 consist of
another bilinear model and two nonlinear moving-average models. The latter type are rarely applied in
practice. For this reason, the focus will be on Blockl models.

The Threshold Autoregressive (TAR) model
Consider the following nonlinear model:

Vi = adYVi—1 + B (Y—1) + F(yi-) + wy, (4.1)
where
1
F(y-1) = A+ exp{—y 1 — )b~ — > i=Lz y>0 a<ea (4.2)
LWG simulated equation (4.1) with gy = 0.3 and ¢y = —a, = 1.2 when ¢, = —¢; = —1 and y — o0 in

equation (4.2). To study the performance of the tests, I linearize equation (4.1). An appropriate way of doing
this is to replace F; by a third-order Taylor expansion about y = 0, because equation (4.1) is linear when
y =0.

The third-order Taylor expansion to F is:

Ti(-1) = b1 — ) + bs(n-1 — ¢)° = b3y — 3bscyr,
+ Gbsc + b))y — g(bsc + b)), j=1,2, (4.3)

where by = y/4 and by = y3/16. Assuming a, = —a, and ¢; = —¢, yields

{an i (Yi-1) + e T(y-D}i-1 = a{Ti(V-1) — (-1} i
= —66l1 bgCly;Ll — (6[93C13 — Zbl Cl)yl—l‘ (44)
Thus the corresponding approximation of equation (4.1) is of the form:
V= ay e+ dyl, + o, (4.5)

and the linearity hypothesis is Hj : @ = 0. The fourth- and second-order terms theoretically present in
equation (4.4) vanish because both ¢y = —a, and ¢ = —q;.

From equation (4.5) it is seen that the NN test has power against equation (4.1), as its auxiliary regression
contains the crucial third-order term y;_;. On the other hand, »? | in TSAY1 is a very poor substitute for ;.
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Assume equation (4.5) is the correct model, and equation (2.1) with gy = 0 and & = 2 is the inappropriate
alternative. Then

o Ey; Eylz—l Eyf—l

/
¥ = Ekik = By, Eyz;—l
Ey,

so that X4y = Ey?_1 = 0, which implies X4y., = 0. Thus for any |a}| < 1, Ay (a], §) = 0, so that the local
asymptotic power of TSAY1 against equation (4.5) is not higher than the size of the test. This explains the low
empirical power of the test.

Next I apply ARE to consider the performance of WHITE3. Assume again that equation (4.5) is the true
model. If I choose o« = 0.05 and 8 = 0.5, say, then the ARE of WHITE3 with respect to equation (4.5) is:

AREy (ay, 8,0.05,0.5) = 1.896a;(1 — a;), (4.6)
so that

max AREy (a, 8, 0.05, 0.5) = 0.474 at a; = +1/+/2,

|an|<1

and ARE (0.3, 8, 0.05, 0.5) = 0.155. The computation of equation (4.6) (see the Appendix) shows that the
only term in WHITE3 based on equation (2.2) that contributes to the (local) power is the third-order term
YVi—1Vi—21,—1. The test thus may be expected to detect nonlinearity in equation (4.1) for a; = 0.3 because
equation (4.5) is a local approximation to (4.1) in the neighborhood of y = 0. However, for the present
parametrization, a much larger sample size than T = 200 is needed for that power to show. Note that the
RESET based on principal components is also without power, although the linear combinations serving as
regressors in the test do contain ;.

The Sign (SGN) model
The sign model of IWG is:

Ve =sgn(y—1) + uy, vy ~ nid(0, 1), (4.7)

where sgn(x) =1, x > 0; sgn(x) =0, x = 0; sgn(x) = —1, x < 0.
Consider the generalization:

v = aFg(yi-1) + w, (4.8)

where Fy(y-1) = (1 +exp{—y»-1}))~' — 1, ¥ > 0. Choosing a = 2 and letting y — 00 yields equation (4.7).
Note that equation (4.8) is a special case of the single hidden-layer feedforward artificial neural network
model (LWG; White, 1989) with a single hidden unit. The NN test of H, : a = 0 is therefore powerful by
definition. Replacing Fy(y,—1) in equation (4.8) by its third-order Taylor approximation about y = 0 (linearity)
yields y, = biyi—1 + by, + ).

The arguments used above apply again. TSAY1 has little power because it lacks y; ;. In fact, its empirical
power in the experiments of LWG does not increase with the sample size. The ARE of the White test equals
zero for @ = 0.05 and B = 0.5, which explains its lack of power. For comparison, RESET with principal
components is clearly now more powerful than in the previous design.

Bivariate models

The above considerations also help explain the simulation results for the two bivariate models. For the SQ
model y; = x7 + u;, TSAY1 is the best test. The regression version of the neural network test indicates that the
NN test of LWG is not as powerful, but may still have considerable power. Taking ), = ax; + bx? + u, to be
the true model, it is easy to see that the asymptotic local power of WHITE3 is not higher than the size of the
test because Xyy = 0. This is because x; and u,_; are independent at any lag ;. Nevertheless, the empirical
global power of WHITES3 is fairly high. This helps to put the performance of the BDS test into perspective. Its
empirical power is high, but no higher than that of a test whose ARE equals zero. However, a problem with
this test is that its size is not completely under control in small samples. This is because its asymptotic null
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distribution depends on two nuisance parameters: the embedding dimension and the nearness parameter; see
for example Brock and Potter (1993). In fact, as to the SQ model, Table 8 in LWG is more informative than
Table 4. The differences in power one may expect appear more clearly when the error standard deviation

o = 20. TSAY1 is then the most powerful test, followed by the NN test. The power of WHITE3 is low.

The power of the linearity tests against the model EXP(y, = exp(x;) + u,) is best evaluated by
approximating the exponent by a Taylor expansion. This shows that TSAY and the NN test should be the most
powerful tests, and that both x? and x; are useful terms in the auxiliary regression. From Table 9 in LWG it is
seen that TSAY1 and the NN test have about the same empirical power. Assuming that the true model is
Y = ax, + bx? + cx; + 1, and selecting equation (2.2) with z; = x; to be the inappropriate one again gives
Y4y = 0. This leads one to expect WHITE3 to be clearly less powerful than the other two tests, which also
turns out to be the case.

Bilinear model
LWG simulated the (Block1) bilinear model

V= @+ Cyth—iy—; + o~ 0id(0, 0%, (4.9)

where i =2, j=1, a= 0 and ¢,; = 0.7. WHITE3 had the highest power. As seen from equation (2.2), its
auxiliary regression does not contain #,_,y,_1. To find out where the power comes from, I consider two
misspecified models based on WHITE3, both of type (4.9). The idea is to separately consider contributions of
different components to the power of the test in the WHITE3 equation (2.2). The first model has i = j =1
and ¢ # 0, whereas the second one has i =1, j = 2 with ¢, # 0. The ARE of the linearity test of ¢;; = 0 in
the first misspecified model when the data were generated by equation (4.9) is:

ARE;(a) = 4a*(1 — a*)*/{(1 + 2a* — 2a")(3 — 2a%)},
whereas that of the second inappropriate model equals
ARE;(a) = (1 — a®)*/(1 + 2a* — 2a*)

(see the Appendix). Now, ARE;(0) = 1, indicating that the component #,_1y;_, in the White tests is important,
contributing power as a = 0 in equation (4.9). The McLeod-Li test also has high power, although its ARE
compared to the test based on the true model (4.9) equals zero. The low power of TSAY1 therefore requires
an explanation. It is sufficient to look at its ARE with respect to the test based on equation (4.9), which is:

ARE(a) = 3a*(1 — a®)/(1 + 2a° — 2a*) = 0,

for a = 0 (see the Appendix). On the other hand, TSAY?2 is more powerful than TSAY1 although it contains
more regressors. This suggests that some of the additional lags introducing cross-terms in the auxiliary
regression of the Tsay test increase the power of the test. To investigate this, consider the following simple
artificial model:

Vo= Ay + oy dia + iy ~0id(0,07). (4.10)
The ARE of the test of ¢;; = 0 in equation (4.10) compared to that of ¢;; = 0 in equation (4.9) equals
ARE7(a) = (1 — a®)(1 + 2a*)/(1 + 24 — 2a%),

so that ARE7(0) = 1. Thus, adding the second lag is likely to increase the power of the Tsay test substantially.
TSAY?2 uses five lags, which reduces the power again because many of the terms in the auxiliary regression of
TSAY?2 are redundant if one tests ¢;; = 0 in equation (4.3). A larger sample size and/or more noise in
equation (4.9) would be needed to render TSAY2 more powerful than the McLeod-Li test. Note that the ARE
of TSAY1 is maximized at @ = +1/4/2, and the maximum equals % Thus for |a] = 1/4/2, TSAY1 would be
clearly more powerful than the McLeod-Li test. The power of TSAY2 would decrease by increasing |a|
sufficiently as ARE#(1) = 0.

The bilinear model constitutes an interesting example, because the McLeod and Li test with zero ARE
compared to the test based on equation (4.9) is quite powerful. The ARE is based on local considerations, and
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a test with zero ARE with respect to another test may still have plenty of power against a global alternative.
The ARE thus does not necessarily say much about the empirical power of a test in a given experiment. What
the ARE comparisons do is establish a ranking of tests in terms of power: for a given number of observations,
a test with a higher ARE with respect to another test is expected to have more power than one with a lower
ARE with respect to the same test.

This has implications for the design of simulation experiments. Assume that, in a pilot study, a test with
zero ARE has high power (say, 0.9). Then one knows that the experiment will not be very informative about
tests with higher ARE, because their power will only vary between 0.9 and unity. Suppose the experiment
includes a test whose ARE is difficult or impossible to determine, and whose power turns out to lie between
0.9 and unity as well. Then it is difficult to say much about the relative performance of the test, because a test
with zero ARE already is very powerful. In the present example, the BDS test is a case in point. It would be
useful to redesign the experiment in such a way that the power of the tests with zero ARE would not be too
high. This would allow more spread between powers of tests with zero ARE and those with high ARE, and
give a better indication of the power properties of tests with unknown ARE. The designs in Block2 (Model5
and Model6) are not ideal in this respect either.

The argument also works the other way around. Suppose that in a simulation experiment the tests with
high ARE have low empirical power. Then the tests with low ARE are even less powerful, and the results of
the experiment probably turn out not to be particularly informative if power comparisons between tests are
the main object of interest. To avoid that, and to ensure a sufficient amount of variation in the simulation
results, tests with high ARE should be designed to have fairly high power. Alternatively, to obtain interesting
information about power differences, the tests should be carried out at a sufficiently large number of sample
sizes.

Nonlinear Autoregressive (NLAR) model

A linearization of the model indicates that TSAY1, TSAY2, the NN test, and RESET may have power against
NLAR because their auxiliary regressions contain »? |. That of RESET also contains y! |, albeit in linear
combinations with other powers of j;_;. That the regressors give power is seen from Table 4 in TWG.
However, TSAY2 has low power because it contains a large number of redundant regressors.

5 Final Remarks

I have shown that the simulation results in LWG can to a large extent be explained by linearizing some of the
models and applying the concept of ARE. The following conclusions emerge. First, the mediocre performance
of the TSAY1 against TAR and SGN models is due to the particular parametrization of these models. The
designs in LWG did not include a two-regime TAR model, against which the Tsay test usually has power; see
Luukkonen, Saikkonen, and Terdsvirta (1988b) and Petruccelli (1990) for examples. Second, the results of LWG
speak against the principal component RESET, not RESET as such. For Blockl models, the original RESET with
f*, and £ as regressors is almost the same as the NN test in Terisvirta et al. (1993), and should therefore
have excellent power against the TAR and SGN models. Third, the design of the bilinear alternatives is not
informative enough for evaluating the relative performance of the BDS test. In general, whenever the BDS test
has high power, then at least one test with zero ARE with respect to the test based on the correct alternative
also is quite powerful. The power of several tests against bilinearity crucially depends on the coefficient of
-1, which equals zero in all simulations of LWG. Luukkonen et al. (1988a) have made a similar point.

Finally, an LM or LM-type test against the appropriate alternative would be a useful addition to any Monte
Carlo design. This is because it gives an upper bound to the empirical power for that particular design, and
thus helps to better assess the relative performance of the other tests. In some cases LWG have already
included it: an example is TSAY1 in the SQ model.
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Appendix: Computing Asymptotic Relative Efficiency

A1l. True model Yy, = ay;_1 + Cy1U;_2Y;—1, the inappropriate model y; = ay;_q + U, + U1V 4

In all these cases, o0? may be regarded as known because the information matrix of 0% and the remaining
parameters is block diagonal such that one block contains o* and the other the rest of the variables. Then the
components of k; are:

dp(a,0)/da = —o >y, (A.D
dp(a,0)/dy = —o il V1 (A.2)
8]5,(&1, 0)/0¢ = —o? Uy )11 (A3)
where @, = y, — ay,_1. Then r = s =1, ¥;; = 0y, is a scalar, and
Cus Oay Oap oy 0 0
T = opy Oyy | =077 0’0 }(3 —2a%) 2a0*
Tpp 0’02 (1+2a* — 2a')

where 0'5 = Eytz = 0'2/(1 — 612). Thus Oyr-a = Oy and O¢pp-a = Oy, SO that ARE,/,(Q) = O']f,¢/0'¢,,/,0'¢¢ =

4021 — a2 /{3 — 2a2)(1 + 22 — 2a")}.
A2. True model y; = aV,_1 + C;1U;_2Y;—1, the inappropriate model the auxiliary regression of TSAY1
The auxiliary regression of TSAY1 is:

V=ay 1+ (/lzj/,z_l + u,.

Then equations (A.1) and (A.3) remain unchanged, but equation (A.2) is replaced by
dpi(a, 0)/3y = —o 21, y7 . It follows that

o2 0 0
Y = 4072 30;* 3@0205
oo (14 2a° — 2a")

which leads to AREy (a) = 3a*(1 — a®)/(1 + 2a* — 2a*).
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A3. True model Y= a;Y;-1 + ag,yt 1 + Uy the inappropriate model equation (A.4)
The inappropriate model is based on WHITE3, and can be written as:

V=Y + U H Yt VYt + Yot + Va1 Vi—2 U, (A.4)

where 1, ~ nid(0, 02). This yields 62X, = ay, 0 % = 30 02Ty = 1506 and

0% Epp.a = 607 (A.5)
Furthermore,
o? 0 0 ao’o;
R 30' + ajo’o; ao’o; 0
vy Uzaf 0
30204

JZEW = (02, 0,0, Zalazayz), GZEW = (502, af,, 0,0, 12011020;3
O‘sz,,/,.a = O‘Z(pr — Z¢ﬂ2;a] Zalﬂ) = (0, O, 0, 6ﬂ]0‘20’>§).

Thus the only term that contributes to the asymptotic local power of WHITE3 in this case is y,_1 V,_20t;_1.
Straightforward computation shows that the southeast corner element of 0 ~*%,,., equals (20203)‘1, so that

Ay (a1,8) = 8'SpyaZyy.uZyg.ad = 181007,
Using equation (A.5), one obtains Ay (ay, §) = 60‘20}6,82, so that Ay (ay, 8)/Ay(a, 8) = 3a2(1 — a}) and

ARE, (8, a1, a, B) = 3> (1 — a){d(1, a, B)/d(4, a, B)}.
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