
Studies in Nonlinear Dynamics and Econometrics

Quarterly Journal
April 1996, Volume 1, Number 1

The MIT Press

Studies in Nonlinear Dynamics and Econometrics (ISSN 1081-1826) is a quarterly journal published
electronically on the Internet by The MIT Press, Cambridge, Massachusetts, 02142. Subscriptions and address
changes should be addressed to MIT Press Journals, 55 Hayward Street, Cambridge, MA 02142; (617)253-2889;
e-mail: journals-orders@mit.edu. Subscription rates are: Individuals $40.00, Institutions $130.00. Canadians add
additional 7% GST. Prices subject to change without notice.

Permission to photocopy articles for internal or personal use, or the internal or personal use of specific
clients, is granted by the copyright owner for users registered with the Copyright Clearance Center (CCC)
Transactional Reporting Service, provided that the per-copy fee of $10.00 per article is paid directly to the
CCC, 222 Rosewood Drive, Danvers, MA 01923. The fee code for users of the Transactional Reporting Service
is 0747-9360/96 $10.00. For those organizations that have been granted a photocopy license with CCC, a
separate system of payment has been arranged. Address all other inquiries to the Subsidiary Rights Manager,
MIT Press Journals, 55 Hayward Street, Cambridge, MA 02142; (617)253-2864; e-mail: journals-rights@mit.edu.

c© 1996 by the Massachusetts Institute of Technology



Estimation of the Stochastic Volatility Models
by Simulated Maximum Likelihood: C++ Code

Jón Danı́elsson∗

Department of Economics
University of Iceland

101 Reykjavı́k, Iceland
jond@hag.hi.is

Abstract. This is documentation for a C++ implementation of the simulated maximum likelihood (SML)

estimation method, where the SML algorithm is applied to the stochastic volatility (SV) model. The algorithm

and code can easily be adapted to a richer class of SV models, as well as to more general dynamic latent-

variable models.

1 Introduction

The stochastic volatility (SV) model has been estimated by a variety of estimation methods. The only known
exact-likelihood method is simulated maximum likelihood (SML), and this is the documentation for C++ code
for estimation of the univariate SV model by SML. The version of the model implemented below is a basic,
three-parameter log-normal SV model, but it can easily be extended to a richer class of SV models, such as
allowing for mean or leverage effects. The code also provides the building blocks for implementing a general
dynamic latent-variable model.

The code is C++, and is designed so that it will compile and run on most systems with minimal effort.
Executables for several systems are also available. This code was originally used by Danı́elsson and Richard
(1993) and Danı́elsson (1994), but had to be extensively modified to make it suitable for public release. The
code has been tested on an HP UX system using the HP optimizing compiler, a SUN OS system using GNU
g++, and Windows 95 using Visual C++ 4.0.

The code is divided into two main parts: the main algorithm and the library functions. The implementation
of SML along with various supporting routines is self-contained. The code is dependent upon library calls for
random-number generation and optimization. The code was developed with the aid of the NAG library,
however, equivalent routines had to be used instead so the code would compile on any system. See Section 7
for more details.

2 The Stochastic Volatility (SV) Model

The simplest version of the SV model is:

yt ∼ N
(
0, σ 2

t

)
log σ 2

t ∼ N
(
ω + δ log σ 2

t−1, υ
2
)
. (2.1)

∗I would like to thank Birgir Runolfsson and an anonymous referee for useful comments. I benefitted from the HCM fellowship of the EU,
and the Tinbergen Institute, Erasmus University Rotterdam provided facilities to finish this project. Updated versions of the program and
executables for HP UX, SUN OS, and WIN32 are available through my homepage http://www.hag.hi.is/˜jond. Executables for more systems
and updates may become available at a later date at this site.

c© 1996 by the Massachusetts Institute of Technology Studies in Nonlinear Dynamics and Econometrics, April 1996, 1(1): 29–34



The model in (2.1) is the most typical representation of the SV model. However, several extensions have been
proposed in the literature. In most cases the SML code can easily be adapted to include those extensions.

2.1 Mean component
It is easy to estimate model (2.1) with a fixed mean. The most efficient way would be to subtract the mean
from the data before any estimation, since known estimation methods are rather complex and the end result
would be the same. If the mean, µt , is time dependent, the parameters of the mean process have to be
estimated directly. While most researchers do not find significant mean components, it is easy to implement
them, both in the theoretical model and the SML algorithm. For example, the mean might be assumed to be a
function of expected volatility:

µt = α + βE
[
σ 2

t

]
= α + βσ 2

t−1

which is the specification tried and rejected in Danı́elsson (1995). This requires changing line 168 in file
sml.cc from

yyy = x2[t]/exp(ly)+ly;

to

mu = alpha+beta*exp(lagy1[n]);

yyy = (data[t]-mu)*(data[t]-mu)/exp(ly)+ly;

where mu has to be defined as double.

2.2 Leverage effects
Leverage effects imply that the shock to returns, εt , is correlated to the shock to volatility, ηt . This type of
model was tried and rejected in Danı́elsson (1995). This can easily be implemented by changing line 166 in
file sml.cc.

3 Simulated Maximum Likelihood

Estimation of dynamic latent-variable (DLV) models is complicated and typically requires simplifying
assumptions for the underlying model. The Simulated Maximum Likelihood (SML) method was developed by
Danı́elsson and Richard (1993) for estimation of a general DLV model, and Danı́elsson (1994) applied SML to
the SV model.

Since σ 2
t is latent, it has to be integrated out of the joint density of yt and σ 2

t as in:

f (YT | θ) =
∫

1

f (XT , YT ) dXT (3.1)

where XT contains all σ 2
t , YT contains all yt , θ is the vector of parameter, and 1 is the support (<T

+). The
marginal density f (YT | θ) is obtained by simulation. Define an importance sampling function (ISF) as:

µ (XT | YT , θ) ≡
T∏

t=1

f
(
σ 2

t | σ 2
t−1, θ

)
(3.2)

and a remainder function (RF) as:

h (XT , YT | θ) ≡
T∏

t=1

f
(
yt , σ

2
t | θ

)
. (3.3)

A Monte Carlo (MC) estimate of the marginal density f (YT | θ) is obtained by drawing simulated YT from the
ISF and evaluating the RF with those random values. If the n-th simulated vector of YT is denoted as Y (n)

T ,
then one simulated likelihood value is:

h
(
XT , Y (n)

T | θ
)

(3.4)

30 Estimation of the Stochastic Volatility Models by Simulated Maximum Likelihood



and the SL estimate, conditional on the parameters, is:

I N (θ) =
N∑

n=1

h
(
XT , Y (n)

T | θ
)

(3.5)

where N is the number of simulations. Parameter estimates are obtained by maximizing log(I N (θ)).

3.1 Acceleration
Estimation by the importance and remainder functions obtained by (3.2) and (3.3) is very inefficient, and the
accelerated Gaussian importance sampling (AGIS) algorithm (Danı́elsson and Richard [1993]) is used to speed
up the simulation.

Multiply the ISF and divide the RF by the auxiliary function (AF):

A
(
Q(n), Y (n)

) ≡
T∏

t=1

exp

[
a(n)

t + b(n)
t y(n)

t + c(n)
t

(
y(n)

t

)2
]

where the coefficients Q(n) are obtained by regressing log( f (y(n)
t , σ 2

t | θ)) on constants y(n)
t and (y(n)

t )2. See
class regress for the details of the regression. The ISF and the AF are multiplied to get the accelerated ISF,
which is rewritten as a density function. See function sml1::get isd() for the details of that operation.

3.1.1 Implementation of SML-AGIS The optimizer calls the function smaxf1() with the parameter vector θ . All
smaxf1() does is call the class function sml1::OptFunc() , which checks for valid parameters and calls the
function sml1::func() and then reports and returns the result to the optimizer. These functions are in the
file con.cc .

The implementation of the SML-AGIS algorithm is contained in the file sml.cc. There the first stop is the
function sml1::func() . Note that the algorithm uses Q, where the code uses the variables bb1 , bb2 ,
and bb3 . The algorithm is outlined in Figure 1.

regress::init() , which allocates memory for the regress class and
calculates the expected value of Q(n).

1. This value of Q is used to evaluate the coefficients of the accelerated
ISF in sml1::get isd() .

2. A loop is created that iterates through the AGIS iterations, default
30 times, or if diffindex < STOPAGIS. diffindex measures the
change in Q between iterations.

1) Evaluate likelihood in function sml1::lik1 func() which:

(a) Loops through time,

(b) generates vectors of N-sized random numbers:

• loops through N

• evaluates log likelihood

• collects values for regression in regress::add() ,

(c) after exiting simulation loop, does regression with
regress::run ,

(d) continues looping through time, and

(e) calculates log likelihood, applying constant.

2) If diffindex < STOPAGIS or iteration > 30 exit, else evaluate
sml1::get isd() .

3. Check for errors and return function value.

Figure 1
One evaluation of the likelihood, conditional on θ .

Jón Danı́elsson 31



4 Numerical Issues

There are a few numerical issues that require special attention.

4.1 Estimation of ω by auto scale
When ω is very different from zero, e.g., it may be −1.0 for weekly data, the algorithm tends to underestimate
ω by a large amount, but the estimates of δ and υ are not affected. This is corrected for by multiplying the
data by a scaling factor, scale. This provides ω estimates that are close to zero, and the corresponding
“adjusted” ω, called ω∗, estimate can then be rescaled to the original ω. The best way to do this is using δ and
υ to get the scaling factor, i.e.:

E
[
yt

] = exp

[
ω

1 − δ
+ 1

2

υ2

1 − δ2

]

and since the target value of ω is 0, we let:

scale =
√√√√exp

[
1
2

υ2

1−δ

]
Var

(
yT

) .

If we then define y∗
t = scale · yt , the δ and υ estimates will be unbiased by using y∗

t , and ω∗ is rescaled back by

ω = ω∗ − log
(
scale2)

(1 − δ) .

To get the Hessian in correct units, the values are converted at each function evaluation. This method requires
knowing δ and υ. They can be obtained by iteration, i.e., use the initial values to scale the data, get δ and υ

estimates, use those to rescale the original data, re-estimate, and iterate. In general, four iterations seems
enough. This is done in the code by the flag Ascale , which by default is set equal to YES, but can be reset on
the command line (see Section 5.2). To get the correct likelihood value, the program makes one final run with
the unscaled data and optimal parameters. See the function sml1::optimize() for the exact implementation.

4.2 Fast and slow regression
There are two ways to do the regression in class regress . We can employ a least-squares method that uses
singular value decomposition, or we can invert the X ′X matrix by hand (it is a 3 × 3). The latter method is
much faster, but less robust. It is also the default method, but the user can override it by the command line
option -reg.

5 Using the Program

The program is called up from the command line. The default name of the executable is svm, and at least
one more argument is needed, i.e., the name of the input file, e.g.,

svm ibm.dat.

Note that the first argument must be the name of the input file, and if the program is called up without any
command line options it will print out all the options and exit. Default values, e.g., initial values, can be
modified on the command line.

5.1 Input file
The input file must have one column that contains the data in log-difference form. See, e.g., the sample file
sp500.dat. The program will automatically determine the number of observations in the file.

32 Estimation of the Stochastic Volatility Models by Simulated Maximum Likelihood



5.2 Command line
The program sets a number of default values which can be overridden on the command line. Probably the
three options most likely to be changed are the initial parameter values, auto scaling, and the amount of
output. The command line options are the following:

-n Number of simulations (default 25)
-i Number of AGIS iterations (default 30)
-ascale Turns autoscaling off (see Section 4.1)
-h Turns off Hessian estimation
-p Tolerance (default 0.002)
-print And one integer in

[
1, 4

]
; determines the amount of

output (default 1)
-seed Sets random number generator seed (default 324)
-par omega delta nu Sets the initial values of the parameters (default 0.0, 0.95, 0.4)
-reg Turns on robust and slow regression (see Section 4.2)

5.3 Amount of output
The amount of printed output is controlled by the command line option -print. This sets the variable Print ,
which has the default value of 1. The other possible values are:

0 Print only maximum log-likelihood value
1 Print header and footer
2 Additionally print a report on autoscale
3 Additionally print each iteration
4 Additionally print messages on each iteration

5.4 Sample output
If the default values are used, then the output from using SP-500 data is:

Simulated Maximum Likelihood Estimation
v. 1.2 February 15, 1996

Stochastic Volatility Model
Jon Dan ı́elsson (c) 1996
Send comments to: jond@hag.hi.is
Wed Feb 14 17:17:05 1996
Initial Value: omega = 0, delta = 0.95, nu = 0.4

Inputfile: sp2022
Input Data: nobs = 2022, mean = 0.0421258, var = 1.25686

Function Value = -2898.803
Running Time = 00:08:39

Parameter Value s.e.
Omega -0.001 (0.004)
Delta 0.961 (0.008)
Nu 0.158 (0.015)

6 The Code

All code is written in standard C++. It contains both core SML files and library routines. The library routines
are kept separate, because a user might prefer to supply her own routines.

6.1 Core code
6.1.1 Files The source code consists of one header file svm.h and five program files.

main.cc Sets up the program classes
setup.cc Parses the command line, sets default options, and contains utility routines

Jón Danı́elsson 33



con1.cc Sets up the optimization, prints main output, calls optimizer, and
contains the objective function

sml.cc The main part of the program, evaluates the likelihood function
regress.cc Does the regression work for the auxiliary function; this is a separate class
Makefile Generic makefile (may need local modification)

6.1.2 Classes The program classes are:

command line Provides default values and command line options
sml1 Where the simulated likelihood evaluation takes place
regress Calculates the default values for the auxiliary function, collects

simulated y ’s during the simulation, and provides the parameters
of the auxiliary function

7 Libraries

I use the NAG library for all “black box” numerical work. In general, one gets very high quality routines with
minimum effort by using NAG. This is especially important in random number generation, which is at the
center of all simulation work. The NAG library routines are also very useful in optimization and estimating the
Hessian.

The NAG library is sold on a commercial basis, and publicly available routines had to be substituted for this
release. I added the public-domain RANLIB library for random number generation to this release along with
some routines for optimization and Hessian estimation. These routines are of inferior quality to the
commercial NAG routines, and the NAG library is plug-compatible to the code. If I find better public-domain
routines, I will include them in later versions.

The interface to the library routines is through the classes opt and normal , which are declared in header
files optimize.h and random.h. The library-related files are:

optimize.h Declares the interface class between optimization library
routines and the main code

random.h Declares the interface class between random number library
routines and the main code

common.h Defines macros that direct the code toward NAG or
other library calls

com.cc Part of the RANLIB release
ranlib.cc Part of the RANLIB release
ranlib.h Declarations for the RANLIB library
simplex.cc Contains optimization and Hessian estimation code
optimize.cc The interface code between the core code and library calls

References

Danı́elsson, Jon (1994), “Stochastic Volatility in Asset Prices, Estimation with Simulated Maximum Likelihood,” Journal of
Econometrics 64, 375–400.

Danı́elsson, Jon (1995), “Multivariate Stochastic Volatility Models and GARCH Models,” mimeo, University of Iceland.

Danı́elsson, Jon and J.F. Richard (1983), “Quadratic Acceleration for Simulated Maximum Likelihood Estimation,” Journal of
Applied Econometrics 8, 153–173.

34 Estimation of the Stochastic Volatility Models by Simulated Maximum Likelihood



Advisory Panel

Jess Benhabib, New York University

William A. Brock, University of Wisconsin-Madison

Jean-Michel Grandmont, CEPREMAP-France

Jose Scheinkman, University of Chicago

Halbert White, University of California-San Diego

Editorial Board

Bruce Mizrach (editor), Rutgers University

Michele Boldrin, University of Carlos III

Tim Bollerslev, University of Virginia

Carl Chiarella, University of Technology-Sydney

W. Davis Dechert, University of Houston

Paul De Grauwe, KU Leuven

David A. Hsieh, Duke University

Kenneth F. Kroner, BZW Barclays Global Investors

Blake LeBaron, University of Wisconsin-Madison

Stefan Mittnik, University of Kiel

Luigi Montrucchio, University of Turin

Kazuo Nishimura, Kyoto University

James Ramsey, New York University

Pietro Reichlin, Rome University

Timo Terasvirta, Stockholm School of Economics

Ruey Tsay, University of Chicago

Stanley E. Zin, Carnegie-Mellon University

Editorial Policy

The SNDE is formed in recognition that advances in statistics and dynamical systems theory may increase our
understanding of economic and financial markets. The journal will seek both theoretical and applied papers
that characterize and motivate nonlinear phenomena. Researchers will be encouraged to assist replication of
empirical results by providing copies of data and programs online. Algorithms and rapid communications will
also be published.

ISSN 1081-1826


