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ON THE IMPACT OF DETERMINISTIC CHAOS ON
MODERN SCIENCE AND PHILOSOPHY OF

SCIENCE: IMPLICATIONS FOR THE PHILOSOPHY
OF TECHNOLOGY?

Theodor Leiber, University of Augsburg

Philosophy relates everything to wisdom, 
but through the methods of science! 
(Immanuel Kant)

1. OVERVIEW AND INTRODUCTION: DETERMINISTIC CHAOS, 
CHALLENGE FOR WHOM OR WHAT?

The modern concept of deterministic chaos arises from the mathematical
and physical investigation of the topological and dynamical  properties of
deterministic systems. The notion of deterministic chaos is frequently used in an
increasing number of scientific as well as non-scientific contexts, ranging from
mathematics and the physics of dynamical systems to all sorts of complicated time
evolutions, e.g., in chemistry, biology, physiology, economics, sociology, and
even psychology. In this, the central epistemological impact of chaos research is
on matters of prediction and computability of most nonlinear deterministic
systems, while the various concepts of deterministic chaos in use do not constitute
a new science, or a revolutionary change of the scientific world picture. Instead,
chaos research provides a sort of toolbox of topological, perturbational, and
numerical methods which are certainly useful for a more detailed analysis and
understanding of such dynamical systems whose deterministic trajectories are,
roughly speaking, endowed with the property of exponential sensitivity on initial
conditions. Such a property, then, implies merely one, but a quantitatively strong
type of effective or empirical limitation on  long-time computability and
predictability, respectively. Several reasons are given for why the impact of
deterministic chaos research on quantitative modelling in the analysis of social and
technological processes seems to be rather limited. 

With respect to deterministic chaos, we distinguish between metaphysical,
epistemological, and mathematical determinism. Epistemological determinism
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amounts to the working hypothesis of lawlikeness of processes—or, of the
heuristic, theoretical, and empirical fruitfulness of lawlike scientific models.
Mathematical determinism is given by the fundamental existence theorem of
ordinary differential equations, i.e., the existence and uniqueness of a solution for
any initial state. We take it that metaphysical determinism is a transcendent
assumption neither provable nor refutable, because epistemological determinism is
not strictly confirmable (because of the problem of induction); and mathematical
determinism is an idealization which is not strictly confirmable empirically
(because measurements are always given with finite precision and are endowed
with noise). Whenever the term “chaos” appears in the following, it is meant (if
not explicitly stated otherwise) to denote “deterministic chaos” in the sense of
mathematical determinism of trajectories.  

Deterministic chaos  has been in vogue now for more than a decade. 
Applications to problems long assumed to be quite regular and predictable, as well
as to problems long intuitively known to be “chaotic” have been proposed, and
quite a number of them successfully so. Meanwhile, the explanatory ambitions
and applications of chaos research, more specifically of nonlinear dynamical
system theory, cover many types of dynamical evolutions in the empirical sciences
such as physics, chemistry, biology, economies, sociology, physiology, and
psychology (Ba ar, 1990; Duke and Pritchard, 1991; Haken, 1983; Küppers,
1996; Mainzer, 1997a; Mainzer, 1997b; Skarda and Freedman, 1987). Basically,
the various applications of nonlinear systems theory try to utilize the results
established in mathematical, and especially physical, chaos research and nonlinear
dynamics, and they constitute the field of research where the basic impacts of
deterministic chaos are to be located. Thereby, interesting and sometimes
illuminating quantitative and qualitative models, treatable by established
mathematical methods, are provided even in traditionally non-mathematized
sciences. 
 

A general lesson to be learned from the various phenomena of
deterministic chaos in mathematics and physics simply is that—as may have been
well known before the advent of modern chaos research—mathematical
determinism, especially if it is assumed to imply long-time computability, is an
idealization never achievable in the empirical world of actual modelling,
measurements, and computations. More specifically, it follows from deterministic
chaos research that any actual perturbation of a deterministic trajectory of a
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dynamical system is amplified exponentially in the course of time, and thereby
long-time computability is strongly limited because of practical reasons. 

2. DETERMINISTIC CHAOS IN MATHEMATICS AND PHYSICS

The modern concept of deterministic chaos has its central bearings,
success, and progress in the mathematics and physics of the topological and
dynamical properties of deterministic systems. 

Different accounts or definitions of chaos have been around in the
literature of the last several years. Not surprising but often ignored, there is,
however, no general definition of deterministic chaos applicable to the majority of
interesting cases (Leiber, 1996a, chap. 15; Leiber, 1997; Leiber, 1998a). 

It is only in the special case of the iteration of a function (e.g., the logistic
function x  ax (1-x), x [0,1], a 4) that there is agreement on the mathematical
(actually topological) properties characteristic of deterministic chaos (Peitgen et
al., 1994, chap. 1): (i) sensitive dependence on the initial conditions (SD); (ii)
dynamical mixing in state space (MIX); (iii) periodic points lying dense in state
space (DPP). Note that the mathematical definition of chaos, (MIX  DPP  SD)
:  DC, presupposes the existence of a state space whose states are precisely
localizable in principle, and it applies to closed systems.  

Moreover, while the chaos industry is still expanding, the interpretational
practice, or meaning variance, of the term, “chaos,” varies a lot, and some
scientists are even quite unhappy about the very notion of deterministic chaos
itself which was accidentally introduced by Li and Yorke (1975). 

The distinguishing property of dynamical deterministic chaos is the
chaotic long-time behavior of dynamical systems.  Deterministic equations of
bounded motion with few degrees of freedom give rise to complicated solution
trajectories, (i) which do not exhibit any quasi-periodicities without any external
disturbances, and (ii) which are extremely, i.e., exponentially, sensitive to small
deviations in the initial conditions. 

For details about the chaotic mechanisms in Hamiltonian and dissipative
dynamical systems (and also some graphical illustrations) see, e.g. (Leiber,
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1996a, pp. 380-397; Thomas and Leiber, 1994). In passing we may also note that
despite the exponential sensitivity of individual deterministic trajectories in many
cases there is some structural predictability possible, e.g., when Hamiltonian
chaotic trajectories are enclosed by invariant tori in “almost” non-integrable
Hamiltonian systems, or when the dissipative dynamics is contracted to relatively
low-dimenional strange attractors. 

The case of regular, i.e., long-time effectively computable, dynamics is
given if the distance d(t) of neighboring trajectories is constant or grows
algebraically in the course of time, 

with a system dependent constant . This implies that the length of the computable
time interval of the trajectories’s evolution also grows algebraically with the
precision of initial data. The reason is that the N binary digits of the inital data are
increasingly lost with the trajectories’s evolution because of the algebraic
amplification of initial value and/or computational errors; i.e., in the regular case,
on the order of N/2N bits per computational step are lost. 

In the case of chaotic, i.e., not effectively long-time computable, motion,
neighboring trajectories diverge exponentially (exponential sensitivity),

where  denotes the largest characteristic Lyapunov exponent. Accordingly, for+

the chaotic case the computable time interval, t 1/ , merely growsc +

logarithmically with increasing precision of initial data; per iteration, then,
approximately one bit of initial data is lost. 

Therefore, in principle the empirical distinction of regular and chaotic
dynamics in a numerical experiment is achievable by quantitative estimates: for
the case of N-bit computing precision, in regular systems any computable
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correlation with initial data is lost after approximately 2  iterations, while inN

chaotic systems the same is true already after N  iterations. At the same time it is
to be noted, however, that dynamical chaos in the sense of limited long-time
computability is a matter of degree. 

Besides the mathematical definition of chaos, which is applicable only to
relatively simple mathematical systems (e.g., logistic function, tent map, and
Bernoulli shift), and besides the characteristics of Hamiltonian and dissipative
chaos, a number of methods have been invoked, especially in the physics of
non-dissipative nonlinear dynamical systems, to characterize the degree of
complexity, and, according to the increasing degree of dynamical instability or
non-predictability, a hierarchy of abstract dynamical systems has been established,
roughly (i.e., neglecting intermediate degrees) ranging from (i) ergodicity, to (ii)
mixing, and to (iii) K- and Bernoulli systems. (For definitions and technical
details, see Batterman, 1991; Lichtenberg and Liebermann, 1983, chap. 5;
Ornstein and Weiss, 1991.)  Note that, unfortunately, it is widespread abuse to
denote all of these types of dynamical instability by the same word, chaos. 

Whereas rigorous existence proofs for the properties of dense periodic
points (DPP) and mixing (MIX) of mathematical chaos can only be given for very
simple nonlinear systems, the overwhelming majority of dynamical systems,
which are of interest in physics, and which are assumed to exhibit chaotic
behavior, do not allow for comparable proofs. Therefore, such systems are
investigated by means of a number of conceptually and empirically nonequivalent
procedures (e.g., canonical perturbation theory, linear stability analysis,
Lyapunov exponents, dynamical entropies, strange attractors, diffusion-like
models), where in most cases numerical computer calculations play a decisive
role.  Almost everything known about strange attractors relies on computer 
numerics.  (For detailed accounts, see, e.g., Buzug, 1994; Lichtenberg and
Liebermann, 1983; Peitgen et al., 1994, chap. 3; Tabor, 1989.)
 

3. DEGREES OF PREDICTABILITY: REGULAR VERSUS CHAOTIC
MOTION

Obviously, the question arises whether the mathematical and physical
concepts of deterministic chaos can be reduced to a smallest common
denominator, which is not only meaningful theoretically, but first of all
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empirically. A positive answer can be straightforwardly given in the framework
of a correlation function concept of the predictability of dynamical systems. 

In the problem of predictability of dynamical evolutions of deterministic
trajectories, actually three processes are involved, namely the observed one x(t),
the model one y(t), and the hypothetically underlying real process z(t). Then, the
mean-square error < > = <(x-y) > as taken from finite empirical averaging2   2

provides a universally adopted measure for prediction accuracy, 

where j counts the different observations, and t  and t +  denote the startingj   j
0  0

instant and the time instant of measurements, respectively. It is assumed that the
greater the number of observations performed the more faithful is the error
estimate in Eq. (1). 

The degree of predictability can now be measured by a coefficient of
correlation between the observed process and the model process at the time
moment  after observation has started: 

Since the initial value of prediction y  is taken to be equal to x , we have D( =0)0        0

= 1; empirically, with increasing  the degree of predictability D reaches zero.
Generally, the closer D( )  to unity (from below) the more satisfactory the
forecast, and the closer D( ) to zero (from above) the larger the discrepancy
between observation and prediction. The time span of predictable behaviour, ,pred

is defined by D( ) = 0.5 which corresponds to the situation that the absolutepred

error < > is of the same order as the observed process’s invariance <x >:2            2

< >  (<x > + <y >)/2  <x >. 2   2   2   2

While in the case of regular motion the mean-square prediction error
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grows algebraically

in the case of deterministic chaos it grows exponentially

with , , and  representing the contributions of “measurement noise” f   M
2  2   2

(i.e., finite errors in measurement and numerical precision of initial data), other
physical noises (e.g., stochastic forces), and the impact of model inaccuracy M
= M  - M , respectively. Empirically, none of these noises is negligible while forx  z

the case of pure deterministic chaos we may omit noises other than perturbations
of initial data due to finite precision in measurement and numerical computation. 

Equating the mean-square error < > with the observation variance2

<x >, we can estimate the time of predictable behavior in terms of the specified2

signal-to-noise ratio SNR = <x >/  for the regular case,2 2

and for the chaotic case:

The feature of local exponential instability, or sensitivity on initial
conditions as given in deterministic chaos means, e.g., that to increase  bypred

chaos
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an order of magnitude the signal-to-noise ratio must increase by the factor
e 20.000. Also, the positive Lyapunov exponents considerably lower the10

predictable time span, especially when  »1, SNR »1 (i.e., small errors), and  +         +

» SNR. 

In deterministic dynamical systems the relationship  <  is fairlycorr  pred

typical (where  denotes the correlation time). The lower limit  =  iscorr        pred  corr

realized when no dynamic equation is available and the prediction is based on the
principle that tomorrow will be like today. (Incidentally, all attempts ever made to
obtain a value of  markedly exceeding   by statistical forecasting methodspred   corr

based on autoregression-type linear algorithms have been in vain. The
comparability of  and  can only be presumed from general considerations.) pred  corr

On the basis of Eq. (3) the predictability horizon  can be defined as ahor

finite timespan of predictable behavior that cannot be surpassed by either
improved measuring instruments or a refined prediction model:

Beyond the predictability horizon  no model can provide an adequatehor

forecast. In those cases where for all tested model processes y(t) it is impossible to
achieve a high degree of predictability D( ) for times exceeding the domain of the
correlation coefficient, i.e., where   , it should be admitted that apred  corr

dynamic model for process x(t) is not available and that x(t) should be categorized
as noise, i.e., as a stochastic process (in the general sense of the theory of
probability) to which no dynamical prediction model can be fitted. At the same
time, processes that are predictable for times exceeding the correlation time are to
be classed with partially determinate ones. 

In summary, any deterministic or stochastic process has a limited
predictability range stemming from inaccuracy of the model equation, perturbing
action of instrumentation or strength of measurement noise, fluctuations in the
system concerned, bifurcations in the course of evolution,  etc., and constraints
due to costs. Deterministic chaos in the sense of exponential instability of
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dynamical systems is a quantitatively severe limitation of the long-time
predictability of deterministic systems, because any sort of error, deviation, or
perturbation is amplified exponentially, see Eq. (3).

Here, some remarks seem to be in order.  Some physicists (possibly
because of the lack of a generally applicable definition of deterministic chaos)
seem to suggest that no specific distinction should be made between chaos and
noise; i.e., deterministic chaos is just denoted as “low-dimensional noise.” Since
Boltzmann’s microscopic chaos, hyothetically underlying statistical mechanics (or
the  stochastic forces representing the heat bath), is not necessarily
deterministically chaotic, however, such an extension of the concept of noise
implies that, at least, we unnecessarily lose conceptual differentiation between two
different mechanisms of stochasticity.

Besides deterministic chaos there are, however, other severe limitations
of computability, including physical limitations of realizability of computing
machines (e.g., quantum uncertainty relation, heat dissipation); much more
important are numerical untreatability and uncomputability (e.g., too high
computational problem complexity); computer errors (e.g., hardware errors,
software errors, algorithm errors). 

Untreatable problems are those which, depending on some system
parameter, have exponentially growing algorithmic complexity; if the
computational complexity is infinite for any problem formulation, conceivable to
date, we call the system uncomputable. For a discussion of points (i) and (ii), and
also a short survey on information-based complexity and computability problems
in linear analysis, see Leiber (1996b, pp. 26-40). 

Note also that from the theory of recursive computability in classical
linear analysis, to date, almost nothing is available about the computational
complexity of nonlinear (i.e., potentially chaotic) problems. It is clear, however,
that the class of numerically untreatable systems (which are not effectively
algorithmically computable because of exponentially growing computational
complexity) and the class of chaotic systems are not identical: every chaotic
system is untreatable (i.e., not long-time computable) whereas untreatable
problems are not necessarily chaotic (e.g., there exist a number of linear,
non-chaotic problems which are untreatable; Leiber, 1996b, pp.36-40). The
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deterministically chaotic systems constitute a true subset of the set of untreatable
problems. Moreover, unique connections between dynamical system
properties—e.g., nonlinearity, non-integrability, and dynamical instability on the
one hand, and algorithmic complexity and limited long-time computability on the
other hand—cannot be established. There are effectively treatable (i.e.,
algorithmically computable) systems which do not admit of a closed-form solution
as a function of time (e.g., transcendental equations); there are nonlinear systems
which are integrable (e.g., solitons); there are linear systems which are
uncomputable, or untreatable (Leiber, 1996b, pp. 38-40); in the framework of
mathematical ergodic theory it has been shown that algorithmic Kolmogorov
complexity is not synonymous with dynamical instability (or “deterministic
randomness; Batterman, 1996); also, exponential instability is compatible with
well-posedness, i.e., with the existence of a closed-form solution. In summary,
for the instability hierarchy of dynamical systems there is no comprehensive
characterization available in terms of computability concepts. 

4. ON THE EPISTEMOLOGICAL IMPLICATIONS OF DETERMINISTIC
CHAOS

It is obvious that the modern concept(s) of deterministic chaos
significantly change the traditional conceptual contents of the concept, “chaos.”
(For an historic outlook to some traditional concepts of chaos, see Leiber, 1996a.) 

In my opinion, however, the novelty and fundamental character of the
epistemological implications of deterministic chaos are quite restricted.
Nevertheless, the features of deterministic chaos, from a classical mechanics point
of view, question a number of implicit assumptions of classical mechanical
physics, the “mechanical world picture” of the 19th century, and some
assumption of a positivistic philosophy of science. 

(i) Deterministic chaos can be conceived as a property of
low-dimensional, nonlinear, deterministic systems with more than two state space
dimensions, which are not subjected to any external stochastic perturbations and
which are not effectively treatable by means of linear perturbation theory.
Nonlinearity (i.e., non-validity of the superposition principle) is a necessary but
not sufficient condition for deterministic chaos in the sense of exponential
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sensitivity to appear. (Perturbation theoretic methods have, however, proved very
useful in the intimate neighborhood of Hamiltonian chaos, especially for
establishing the KAM theorem; (Leiber, 1996a, pp. 380-385, 390-395.)

(ii) In contradistinction to purely statistical models, chaotic dynamics can
be partially subjected to quantitatively precise analyses other than probabilistic
methods. At the same time, deterministic chaos research can be successfully
applied only to systems with relatively few dimensions. For higher dimensional
systems we usually have to invoke probabilistic modellings irrespective whether
the underlying deterministic dynamics is chaotic or not; in systems with attractors
of large dimension, naive arguments indicate that recurrence times are
astronomical:   < 0,  = 0, and many  > 0 i.e., -1 « lim (1/t)i=1  i   n     i       t ;V(0) 0+

n                 

V(t)/V(0) < 0.  Here is only weak contraction of the occupied phase space
volume, and the mean recurrence time = /  »1 (i n), where  and  denotei i    i  i

the Luapunov exponents of the deterministic flux and the corresponding Poincaré
map, respectively.  Or, as John Guckenheimer has put it: “A likely bet is that
most natural systems display either simple dynamics that are not chaotic or
dynamics that are beyond the realm of low-dimensional chaotic attractors”
(Guckenheimer, 1991, p. 7). Moreover, a quantitative argument given by
Jean-Pierre Eckmann and David Ruelle (Ruelle, 1990, pp. 244 ff.) demonstrates
that the (re-) construction of strange attractors from a time series by means of the
Grassberger-Procaccia algorithm is to be interpreted very cautiously: from purely
theoretical considerations it follows that for such attractors, the correlation
dimension  2 log   N, where N is the number of utilized time series data. This10

implies that dimension estimates are only informative if they are well below 2
log  N. In many cases presented in the literature, however, this is not the case10

(because usually N 1000 and the measured “dimensions” are of the order of 6):
“The ‘proof’ that one has low dimensional dynamics is therefore inconclusive,
and the suspicion is that the time evolutions under discussion do not correspond to
low-dimensional [deterministic] dynamics. It is possible that interesting
information can nevertheless be extracted from the time series examined, but this
would probably require new ideas. In the meantime prudence is in order, and
claims that one can predict the stock market—for instance—using the ideas of
dynamical systems appear somewhat unrealistic” (Ruelle, 1990, p. 247). 

(iii) From a foundational point of view in physical theorizing there is
some vague hope that in the framework of mathematical ergodic theory
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deterministic chaos might provide a micro-dynamical foundation of
macro-properties as found in nonlinear non-equilibrium thermodynamics. The
results established by the KAM theorem may be taken as providing a possible
route from integrable, reversible behavior to probabilistic, irreversible behavior in
statistical mechanics; however, these are still purely qualitative arguments, and no
one is able to explicitly deduce from chaotic dynamics the basic equation(s) of one
of the thermodynamic approaches. 

(iv) Mathematical determinism is empirically rather meaningless, and the
assumption that mathematical determinism should imply numerical long-time
computability is simply misguided; a specifically illuminating case is the solution
of the deterministic Hamiltonian  N -body problem from celestial mechanics
(Leiber, 1996a, pp. 390-395), where it can be shown explicitly that even a
constructive solution, namely a globally convergent power series (Wang, 1991),
can be useless from a practical point of view because the very slow convergence
and the round-off errors make these series useless in numerical work.
Deterministic chaos is, however, just one additional, quantitatively specific aspect
strengthening such arguments, which state that mathematical determinism
(theoretical or formal determinateness; traditionally sometimes called “absolute
predictability”) and predictability (determinability; effective computability) of
individual trajectories are clearly to be distinguished, even if there were no
deterministic chaos at all. 

Note that Pierre Simon de Laplace equated mathematical determinism
with absolute predictability, but only for the case of a super-intelligent being (later
called the Laplacean demon) which would be able to know the initial conditions
and interacting forces of a mechanical system with absolute precision, and which
would in no way be limited physically. In modern terms; for an idealized infinite
Turing machine, deterministic chaos would not even appear.   

For a discussion of the relations between determinism, deterministic
chaos, and freedom, see Leiber (1998a).  It is an immediate consequence that a
correct deterministic nomological (DN) explanation (based on a deterministic law)
does not necessarily constitute a potentially correct long-time prediction; the
corresponding equivalence is only theoretically valid, namely if the initial data are
known with arbitrary precision; especially in the case of deterministic chaos the
initial data have to be known with precision increasing at least exponentially with
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the time interval to be predicted. Therefore, long-time effective numerical
computability or empirical predictability can no longer count—in fact they never
could count—as decisive criteria for the operationalization (or verification) of
deterministic lawlikeness. 
From the SD-property in chaotic systems, and the unavoidable (initial value)
measurement errors and computational deviations inherit in any computational
process even of non-chaotic systems, it has been concluded that (neglecting
Duhem-Quine holism for the case of an Allsatz) deterministically chaotic laws of
motion (e.g., difference or differential equations) are not falsifiable (from
computer experiments) in the strict sense (i.e., deterministically), but are only
treatable by means of the usual statistical methods (Düsberg, 1995). This claim is,
however, not strictly valid at least for two reasons: (i) In the cases where the
Shadowing Lemma (Coven et al., 1988; Peitgen et al., 1994, pp. 122 ff.) can be
proved explicitly. (ii) Moreover, such a degree of non-falsifiability is only larger
for chaotic systems because in the long-term they do allow only for probabilistic
predictions, i.e., the predictions are of the type that the dynamic system after
some time will be found in some infinitesimal interval dx of the state space with
probability p(x)  dx, where the probability density p depends on the equation of
motion considered (for an explicit example for the logistic equation, see Düsberg,
1995, p. 17), while non-falsifiability is nevertheless not completely negligible for
non-chaotic systems, simply because mathematical determinism (including the
reversibility and reproducibility of formal states) is an idealization which is not
attainable by empirical science. Clearly, the difference between regular and
chaotic systems is that for chaotic systems the reliability of predicted values
decreases exponentially with increasing prediction time span, while in regular
systems it decreases merely algebraically. In this sense, on the observational level
all dynamical systems exhibit the property of  effective irreversibility, but to
different degrees, which may be of considerable importance, however, for
practical purposes. 

Also, deterministic chaos puts limitations on the feasibility of any
theoretically intended reductive explanation which should be carried out via
precise numerical computations of the system’s state; e.g., in the case of
micro-reductions effective numerical untreatability may prevent the effective
execution of an intended partial reduction because the reducing problem
formulation may be numerically untreatable while the reduced problem
formulation may not be (Leiber, 1998b). 
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Research on deterministic chaos provides mathematical and numerical

refinements with regard to the solution structure of nonlinear differential (and
difference) equations with respect to their dynamical stability, with some loose
connection to questions of their algorithmic computability; and thus, deterministic
chaos in physics constitutes distinct methodological progress. Also, “The
mathematical theory of dynamical systems forms a substrate for the construction
of computational tools that allow us to explore complex dynamical models much
more efficiently than we have done so far, whether or not the systems are
chaotic” (Guckenheimer, 1991, p. 8). Physical chaos research however, does not
constitute a new research programme, or novel theory of physics. The theoretical
core or negative heuristic is still constituted by the axioms and theorems of
classical mechanics. 

This is not to say that physical chaos research does not have its novelties,
namely, its positive heuristic (investigate nonlinear systems with more
complicated solution behavior); its novel predictions (e.g., homo- and heteroclinic
points and related complicated orbits in Hamiltonian chaos; strange attractors of
different types in dissipative chaos); and its novel applications (i.e., successful
predictions). In this context, e.g., researches in Hamiltonian chaos are merely one
argument for maintaining that dynamical systems are richer in solution structure
than the integrable part of mechanics, the importance of which has long been
overemphasized. 

Epistemologically, therefore, drawing a direct comparison between the
findings of deterministic chaos and the fundamental changes of physical theorizing
in the 20th century is exaggerating. In contradistinction to relativistic and quantum
mechanics, physical chaos research in the framework of classical mechanics does
not develop novel fundamental structures of the micro- or macro-cosmos, though
it has led to a certain renaissance of classical mechanics by emphasizing the
general and possibly unifying question of algorithmic, effective computability of
dynamical systems. Surely, with the advent of deterministic chaos in the natural
sciences, the “dream of physicalism,” in the sense of a belief in the feasibility of
“perfect predictability” based on mathematical determinism, has met an additional
and publicly very effective counterargument. Remember the famous, but rather
metaphorical notion of the “butterfly effect."  But it should also be remembered
that the thesis of “perfect predictability” was never tenable. 
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Moreover, some dynamic phenomena of deterministic chaos demonstrate
that there is obviously no fundamental dichotomy between determinism and
randomness in mathematical modelling, because unstable deterministic, chaotic
systems may model specific random phenomena. For a variety of physical
examples of ergodic systems it can be shown (Ornstein and Weiss, 1991) that a
deterministic process is indistinguishable from a non-deterministic Markov
process up to deviations due to a finite partition of the state space. If this partition
is chosen as the finite limit of measurement accuracy, a deterministic and a
Markov process model of a Sinai billiard are observationally indistinguishable.
Thus, results from the investigation of the instability hierarchy of dynamical
systems show that it is not always unambiguously possible to decide on the basis
of empirical success whether the model adopted should be mathematically
deterministic or indeterministic (i.e., stochastic). This again shows that
mathematical determinism is not very meaningful empirically, and that the
determinism or indeterminism of our dynamical models should be conceived as a
matter of degree; and deciding between a deterministic and an indeterministic
model of description can be a convention depending on the choice of the precision
of analysis. The connection between statistical and deterministic description is
quite intricate indeed. For many, and probably for most types of predictions,
statistical description is operationally more meaningful, since it reflects the finite
precision of measurement and numerical process, and it bypasses the fundamental
limitations associated with the instability of the hypothetically underlying
deterministic motion. 

5. IS THERE ANY RELEVANCE OF CHAOS RESEARCH TO THE
ANALYSIS OF SOCIAL AND TECHNOLOGICAL PROCESSES?

First of all, let us hear some statements from a 1989 paper published in
the American Journal of Physics (the copyright of which is with the American
Association of Physics Teachers), under the title, “Chaos versus Predictability in
Formulating National Strategic Security Policy” (Saperstein and Mayer-Kress,
1989). There it is maintained that: 

A generally recognized relevance of current physics methods to
important nonphysics problems should make it much easier to
attract and keep physics students. It thus seems reasonable for
physicists to discuss and develop such nonphysical problems both
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in and out of their classrooms.  Aside from attracting students,
such activities by physicists may make important contributions to
the public debate and resolution of major national and
international issues (Saperstein and Maye-Kress, 1989, p. 217;
my emphasis).

After the announcement that “the well-known transition from laminar to
turbulent flow is a heuristic analogy to the transition from cold to hot war,”
Saperstein and Mayer-Kress present a “simplified procurement model for the
Strategic Defense Initiative (SDI) . . . which can be used to determine the
outcome of various deployment modes” (Saperstein and Mayer-Kress, 1989, p.
217). As a result of their numerical investigation they conclude: 

Because of uncertainty as to which, if any, parameter sets are
characteristic of the “real world”, we look at many sets. Within
this variety, it is possible to find the desired "yes"  answers to
both of these questions [posed there]. . . . These results from a
very simple model, which suggest caution toward a policy of
deploying SDI, indicate the usefulness of applying physical ideas
to  the nontechnological world of strategy and public policy
making. 

  We have just introduced a large number of model parameters,
many of which cannot be adequately pinned down from the open
literature. There will be more such parameters as the model is
developed. There will also be several model functional
relationships that cannot be directly determined via observations
of the present world scene. And yet we  wish to learn something
useful—applicable to the world scene— from our model,
incomplete and uncertain as it obviously is (Saperstein and
Mayer-Kress, 1989, p. 219; my emphasis).

Despite their admission of the rather approximative character of their
modelling approach (via some nonlinear rate equations), the authors hold to their
general claims for its fruitfulness: 

Not only is physics useful  for the discussion of the technological
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subunits of policy (will they work, separately and together as a
functioning system?), it is also useful for analyzing the entire
policy structure itself. It can throw significant light on the
fundamental policy questions: even if it all “works”, will it really
do for us that which we want done? The ability to deal with such
questions should certainly add to the pride of physics students and
their faculty (Saperstein and Mayer-Kress, 1989, p. 222). 

Now there can be no doubt that there is an important place for the
widespread application of the great amount that has been learned about
nonlinearity in chaos research in recent years. But some concerns may already be
formulated as to whether research as it is now will succeed in the broad sense
hoped for. For the case of potential applications in the biological sciences it has
been stated:

More and more nonlinear research is becoming either marginal
or irrelevant, aided and abetted by the wide availability of larger
and larger computers, and the ease of formulating variations on a
basic mathematical theme and doing one more case. Indeed,
many of these incremental explorations  yield fascinating special
features. However, the important questions are: first, do they
extend our general understanding; or, alternatively, do the special
features really provide new, quantitative insight  to some
particular experimental observation? It's not clear in many
instances of published research today whether the answer to
either [question] is in the affirmative (Krumhansl, 1993, p. 97;
my emphasis). 

In this sense, in quantitative biochemical and biomolecular modelling
there seems to show up a certain tendency for “marginal modelling,” or “science
by advertisement”: i.e., extremely sophisticated nonlinear simulations have been
and are carried out “that show interesting behavior, but little effort has been
expended to seek out substantively their presence or absence in situations they
allegedly represented.”  Similarly, many of the current nonlinear dynamical
models of the conformations of biomolecules are “biology by advertisement”
(Krumhansl, 1993, p. 98). 
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Moreover, there is a certain amount of relevance to the estimation that 

a similar situation is developing in certain areas of nonlinear
science today, particularly as new supercomputers allow the
exploration of more and more complex model problems. . . .
There are notable exceptions, as in hydrodynamics where
exploration of singular properties, local structures, and
turbulence has maintained close and faithful contact with the
physics (Krumhansl, 1993, p. 98). 

Obviously, deterministic chaos and the predictability problems associated
with it only apply to mathematized problem formulations in the form of
deterministic dynamical equations. This severely restricts the actual impact of
deterministic chaos in disciplines other than mathematics, physics, and
physico-chemical dynamics (and even there). In this sense, an evident argument
for why deterministic chaos is not so important in social process modelling is that
deterministic dynamical models are rarely of successful use there; instead,
stochastic  modelling (e.g., Markovian systems) and probabilistic  (“top-down”)
approaches (e.g., synergetics; probabilistic diffusion-like processes; phase
transitions in non-equilibrium systems) are frequently utilized (Gsänger and
Klawitter, 1995; Anonymous, 1996b; Weidlich, 1994). An immediate
sub-argument in the same vein is that, even if deterministic models were used on
some basic level of description, in any realistic model system probabilistic
modelling prevails if the number of degrees of freedom exceeds a certain limit
(say,  10 -10 ); then, the micro-information about deterministic trajectories is2 3

smoothed out, e.g., through coarse-graining, or probability densities. 

It seems clear (or, it is almost trivial to say) that the limited successful
applicability of dynamical (and also stochastic) mathematical models in, e.g., the
social and behavioral sciences is basically the sheer result of the enormous, truly
tremendous complexity of relevant systems there.  This implies irreversibility,
limited predictability, and limited reproducibility, irrespective whether the
systems are dynamically chaotic or not. Here, complexity is not meant to denote a
technical term but comprises, among other things, the following problems: (i) the
identification, construction, and interpretation of relevant observables with stable
properties is most often a thing too hard to achieve; (ii) a corresponding measure
space and its empirical basis are not easily, or unambigiously, or at all definable
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(and empirical data are often quite unsharp; for the explicit mathematical
discussion of an interesting simple example from social politics, see Krause,
1996); (iii) most often it is a question what the relevant interaction mechanisms
are, or how they should be modelled. In other words, at least from a physicist’s
point of view the rather limited success of quantitative-mathematical methods in
the social and behavioral sciences is a result of the fact that in the generic case we
would have to investigate many many-particle systems which are nonlinearly
coupled, which are subjected to stochastic disturbances, whose particle properties
are changing in the course of dynamic evolution, and whose dynamical “laws” are
also changing (or they are not uniquely identifiable with appropriate reliability).
The lack of detailed and law-like dynamical models—which are also
well-confirmed in the sense of being an integral part of a successful theory-net—in
the social sciences leads to a distinct preference for employing statistical
approaches in the sense of static models (i.e., of statistical analyses of empirical
data) while dynamical models are at most used in the sense of quantitative
simulations— which can, in most cases, merely be given a qualitative, or rather
vague interpretation. 
 

Nevertheless, there are dynamical models in use (e.g., cellular automata,
generalized rate equations, statistical mechanics, game theory, etc.) which give
partial insights into selected complex social and behavioral dynamics (Gsänger and
Klawitter, 1995; Hegselmann and Peitgen, 1996; Hegselmann et al., 1996;
Mainzer, 1997a; Mainzer, 1997b; Troitzsch, 1996; Weidlich, 1994). Therefore,
it seems that mathematical modelling and numerical simulations in the social
sciences constitute interesting approaches supplementary to the core of the
application of mathematical statistics and non-quantitative investigation. And
mathematical modelling can be fruitful theoretically, heuristically, and sometimes
even empirically; but it will always be very restricted in the social sciences. 
 

Among the possible successes to be gained from mathematical
(quantitative) modelling of social processes, we find the following (see
Hegselmann and Peitgen, 1996, pp. 13-15): (i) Theoretical model reductions can
improve the theoretical understanding of the relations between micro- and
macro-levels of description (e.g., micro-explanation of the appearance of
unexpected properties on the macro level; unexpected reduction of known
macro-phenomena to micro-processes). (In this sense social scientists may learn
from chaos research “that a well founded substantial theory on the micro level is



PHIL & TECH 4:2 Winter 1998 Leiber, Impact of Deterministic Chaos/42

indispensable for understanding even the least complex social processes and for
the analysis of process produced data: Curve fitting procedures on the macro level
will never do, and fitting a standard linear model to data produced by a nonlinear
process will do neither”; Troitzsch, 1996, p. 184). Theoretical results (Gaines,
1976; Gaines, 1977; Pearl, 1978, about the relation between the amount of data,,
e.g., number of observations, the complexity of models, and their predictive
properties seem to imply that indeterministic, stochastic models, which have been
derived from empirical data, do not exhibit valuable predictive abilities,
independent of the amount of data available.). (ii) Quantitative abstract models
may allow for qualitative explanations, and they may further the “heuristic
understanding” of the dynamics of complex processes where nonlinear dynamical
modelling emphasizes the importance of the formation of organizational structures
without central processing units (“self-organization” or non-equilibrium phase
transitions).  (Social scientists may learn from chaos research “that equilibrium
states are seldom found in complex systems, and hence that linear models are not
very well suited to the analysis of data in the social sciences”; Troitzsch, 1996, p.
184). (iii) Mathematical modelling, and numerical and analog simulation may
provide non-negligible contributions to the process of theory formation in the
empirical social sciences. (E.g., “An analysis of a noisy chaotic time series will
yield the attractor dimension and thus give hints at the number of variables—(e.g.
subpopulations, or types of individuals, or attributes of groups— involved in the
process under observation”; Troitzsch, 1996, p. 185). Besides hinting at such
general model-theoretic, explanatory, and pedagogical aspects (or hopes, or
regulative ideas of research), I cannot do better than emphasize a statement
recently given in the literature: 

Whereas it is relatively easy to design and to simulate a complex
model of a process in a complex social system in such a way that
the model displays complex behaviour we shall see that it is
extremely difficult to find or to gather data supporting such a
model. Thus, in the realm of social science it might be in fact
impossible to make reasonable use of the methods used in physics
to detect chaotic behaviour (Troitzsch, 1996, p. 162).

Quite obviously, what has been said about the impact of deterministic
chaos on quantitative sociology also applies to the field of investigations in
philosophy of technology, including ethics of technology.  (Some recent works in
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ethics of technology are Hastedt, 1991; Lenk, 1992; Lenk, 1994; Ropohl, 1996.
For an overview of the state of the art in ethics of technology, see Grunwald,
1996a; Grunwald, 1996b. Note, however, that Grunwald’s criticism is sometimes
exaggerated, and his constructivist arguments—Grunwald, 1994 and
1995—against the feasibility of a quantitative approach in a social or technological
systems’s dynamics are, at least, open to critique. See also Anonymous 1996a.)  
It also applies to action theory of decision and planning; technology assessment,
etc., and especially to quantitative models in technology assessment (e.g., trend
extrapolation; formation of historical analogies; Delphi reports; analysis of
relevance trees; risk analysis; model simulation; cost-profit analysis).  (For an
overview of the state of the art in technology assessment, see Bullinger, 1994;
Mohr, 1995. For the repertoire of methods employed in technology assessment,
see VDI-Report, 1991.)
 

In contradistinction to the dynamical models in the natural sciences
(physics, chemistry, and biology), technological developments take place in much
more complex scenarios comprising scientific, technological, economical,
ecological, sociological, political aspects and the like. Therefore, it is
tremendously more complicated to unambiguously fix procedures and rules for
quantification in quantitative technology assessment which would guarantee the
intersubjective and situation-invariant reproducibility of interpretation of
quantitative models.

Nevertheless, model simulations or numerical experiments (executed on
the basis of different mathematical problem formulations ranging from simple
optimization computations to the ambitious models of operations research) are a
powerful tool for studying the behavior of complexly interacting system networks.
This is especially true if real-world experiments are impossible because of
theoretical, practical, or ethical reasons, or if the total effect of many
interdependent causes can no longer be estimated intuitively. The basic
methodological problems of quantitative dynamical technology assessment are
these: while computer assisted model simulations and predictions are often
desirable and indispensable, the empirical adequacy of the modelling quantities is
often insecure (because of lack of dynamical models, insecure knowledge,
insecure measurement units, subjective preferences, high real-world complexity).
The resulting consequences are that the dynamics and results of the model systems
are hard to survey and interpret, and their empirical adequacy is not
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unambigiously decidable. 

In this sense, the results of an opinion research poll among 208 mostly
industrial research laboratories in Japan in 1990 seems to be typical. The
researchers were asked for the efficacy as well as the degree of application of
different technology assessment methods. This poll shows that the efficacy of
model simulation is highly estimated (as effective; or most effective) by more than
40% of the interviewed, but its degree of application is almost zero. While trend
extrapolation gained almost the same efficacy estimation, it is applied by more
than 30% of the interviewed (Grupp, 1994, pp. 79-82). To be sure, the different
methods of technology assessment provide us with possibilities to analyze
technological developments to some extent in advance, and to avoid some of their
undesirable effects (Bullinger, 1994). For realistic situations, quantitatively
precise predictions are, however, not effectively achievable, neither in  the
sense of deterministic, nor of reliable probabilistic predictions.  This is
because—intuitively speaking—“the problems are much more difficult than the
N-body problem, or weather forecasting.” 

It is in order to cite some recent opinions here:

— "Predictions, in the sense of absolute statements about the future, or
firm forecasts, are never attainable in technology assessments.  The
complexity of the subjects of inquiry, as well as of the methods
available, always intervene" (Bonnet, 1994, p. 37).

— "To sum up, it can be said that there is no single method of
technology assessment—only various methodologies for particular
technology assessments.  These methods all come out of the
particular disciplines brought into play.  Moreover, whether or not
the methods are appropriate for a particular technology assessment
depends upon the competence of the team and the availability of
data relative to the problem" (Bonnet, 1994, p. 49).

— "Within the scope of research and development, or innovation,
social and political processes play so great a role, relative to
technical aspects, that it would be unrealistic to expect determinate
supporting statements.  Predictions, in the sense of absolute



PHIL & TECH 4:2 Winter 1998 Leiber, Impact of Deterministic Chaos/45

statements about the future, are not available for technology
assessments.  The same holds for forecasts in the narrow sense,
i.e., statements making truth claims with a high degree of
reliability.  "Foreshadowing" might be the best concept to use to
characterize an open-future type of technology assessment; indeed,
it seems to be the only possibility" (Grump, 1994, p. 57).

— "Technology assessment can no longer be viewed as a tool for
precise forecasting—or as providing, for what is happening now but
is viewed as an early sage of what is to come, either a short-term or
a long-term framework or perspective.  Rather, technology
assessment is closer to being a tool for the discussion of possibilities
or alternative futures.  Today, it seems, it is much more like the
preliminary discussion of choices among possibilities—which
politicians can then proclaim to be true or well grounded if they
want to seem to have information about the future.  This does not
mean that we should no longer make predictions about future
possibilities, especially if they can be made in the form of models
or calculations—for here we do have better abilities than before. 
However, this should not be the only place we look for knowledge
about responsible behavior; that is better sought in discussion or
open arguments about what is or is not desired" (Petermann, 1994,
p. 110).

— "On the whole, technology assessment has come to be thought
of—figuratively speaking—as a more open, softer, less science-like
concept.  The dominance of experts, or basing claims on hard
evidence, have either disappeared or come to be treated as no more
than background" (Petermann, 1994, p. 111).

Therefore, in the sense of a methodological or practical (but not
necessarily epistemological or ontological) anti-reductionism, we have to accept
the thesis of non-separability of quantifications in social systems from the
overarching systems of normative aims and values (and risk assessment).
Accepting this should, however, neither lead to an overall negation of the
possibility of quantitative modelling in specific cases, nor to an underestimation of
the importance of non-quantitative analyses in the framework of a generalized
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systems theory (Kornwachs, 1991). In technology assessment, the need for
interdisciplinary research efforts is obvious (and also rather well known, but not
always realized); while chaos research is surely of rather limited relevance. 

6. CONCLUDING REMARKS

To conclude, I would like to summarize the most general conclusions that
can be drawn from contemporary chaos research: theoretically, deterministic
chaos is conceived as a property of systems which are strictly deterministic in the
sense of mathematical determinism; empirically, the most prominent feature of
such systems, namely, the exponential sensitivity of initial conditions, leads to an
amplification of any perturbation, noise, or error, which grow exponentially in the
course of time; deterministic chaos always implies effective uncomputability (but
not necessarily untreatability)—i.e., the precision of the initial data required for
gaining a given precision of final data (and thus computational complexity)
increases exponentially fast; unambigious definitions of deterministic chaos exist
only for relatively simple mathematical maps and not for interesting cases of
dynamical systems. 

There is a hierarchy of degrees of computability of formal systems, and
only the “edges” are known, to date. Within this hierarchy we may call those
systems chaotic which, basically because of their nonlinearity, exhibit at least
some close analogues of the SD property because of the MIX and DPP property,
and which are therefore algorithmically uncomputable (or have at least
algebraically growing computational complexity) in the long term. Thus,
deterministic chaos constitutes merely one problem type in the wide, and partially
still unexplored range of problems of effective computability. In a more general
sense, chaos research provides us with intuitive examples and arguments which
should be used to further our often underdeveloped abilities to do “nonlinear
thinking” (Mainzer, 1997a); namely, conceptualization in terms of nonlinear
causal nets instead of mono-causal chains. Such abilities are well trained by
studying the dynamics of nonlinear systems, with their emphasis on the role of
instabilities leading to exponential error amplification. 

Another lesson to be learned from chaos research is that the mathematical
and physical models of dynamical systems theory, which stresses the importance
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of generic properties and structural stability (e.g., strange attractors, bifurcation
scenarios), provide invaluable guidance in the study of specific problems (e.g.,
many numerical results previously qualified as “anomalous” are now used for
identifying chaotic behaviour). Different methods are provided for analyzing
solutions with interesting global properties in specific nonlinear models. Most of
these methods rely heavily on numerical experiment and have led to a number of
new methods of data analysis (e.g., dimension computations, Lyapunov
exponents, Kolmogorov-Sinai entropy, phase space reconstruction, spectra of
dimensions). It seems, however, that the range of applicability and validity of
such methods has not yet been investigated comprehensively.  None of the famous
scenarios of “bifurcation to chaos” (like period doubling, quasiperiodic) seem to
be sufficiently general that we can entirely dispense with analyses aimed at
determining what actually occurs in specific dynamical models. 

It should also be clear that chaos research does not constitute a new
science or novel theory. Physical chaos research does not even exist as a coherent
field (comparable, e.g., to quantum and relativity theories); and there is no
comprehensive methodology available for, e.g., mathematical, Hamiltonian, and
dissipative chaos.  In these three general cases the properties of chaos are (or have
to be) investigated by different methods. Thus, chaos research constitutes a rather
loose collection of ideas and methods which can be added to the scientist's
toolbox, and many are inherited from classical applied mathematics.

In summary, the different approaches to deterministic chaos tell us that
there are severe quantitative limitations to long-time computability, and thus
controllability, already in deterministic systems with few degrees of freedom.
Thus, deterministic chaos constitutes one argument out of many that attack the
general positivistic belief in the complete computability of nature—advocated at
least since Galileo, Hobbes, and Descartes, but also by the 19th-century
mechanists, 20th-century positivist philosophers of science, and many others. 

For example, as Moritz Schlick said: “In other words, arriving at a
correct prediction based on causality is the true mark of lawlikeness" (Schlick,
1931, p. 150). Note that deterministic chaos also pulls down Einstein’s famous
and somewhat superficial 1935 criterion of “physical reality,” which reads: “If,
without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exists an



PHIL & TECH 4:2 Winter 1998 Leiber, Impact of Deterministic Chaos/48

element of physical reality corresponding to this physical quantity” (Einstein et
al., 1935, p. 777). 

The mathematized natural sciences are still rather close to the
technocratic ideal of progress; but they also draw attention to its limits today. We
clearly see the epistemological limits of the insights possible for us into the
dynamics of the material world, which have only become accessible to precise
methodological analyses in recent times. The limitations of computability are
limits of controllability and feasibility. Therewith, it is not the developmental
endpoint of the mathematized natural sciences which is announced, but it may
well be an insight into the indispensable value of some more qualitative arguments
within the quantitative sciences which need to be promoted. 
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