Inference in TAR Models - Abstract

Inference in TAR Models

Bruce E. Hansen
Department of Economics
Boston College


Pages 1-14


Abstract

A distribution theory is developed for least-squares estimates of the threshold in Threshold Autoregressive (TAR) models. We find that if we let the threshold effect (the difference in slopes between the two regimes) become small as the sample size increases, then the asymptotic distribution of the threshold estimator is free of nuisance parameters (up to scale). Similarly, the likelihood ratio statistic for testing hypotheses concerning the unknown threshold is asymptotically free of nuisance parameters. These asymptotic distributions are nonstandard, but are available in closed form, so critical values are readily available. To illustrate this theory, we report an application to the U.S. unemployment rate. We find statistically significant threshold effects.


Bibliography

  • Andrews, D. W. K. (1993). "Tests for parameter instability and structural change with unknown change point." Econometrica , 61: 821-856.
  • Andrews, D. W. K. (1994). "Empirical process methods in econometrics." In R. F. Engle and D. L. McFadden (eds.), Handbook of Econometrics , vol. IV. Amsterdam: Elsevier Science, pp. 2248-2296.
  • Andrews, D. W. K., and W. Ploberger (1994). "Optimal tests when a nuisance parameter is present only under the alternative." Econometrica , 62: 1383-1414.
  • Bai, J. (forthcoming). "Estimation of a change point in multiple regression models." Review of Economics and Statistics .
  • Chan, K. S. (1990a). "Testing for threshold autoregression." The Annals of Statistics , 18: 1886-1894.
  • Chan, K. S. (1990b). "Deterministic stability, stochastic stability, and ergodicity." In H. Tong, Non-Linear Time Series: A Dynamical System Approach . New York: Oxford University Press, Appendix.
  • Chan, K. S. (1991). "Percentage points of likelihood ratio tests for threshold autoregression." Journal of the Royal Statistical Society, Series B , 53: 691-696.
  • Chan, K. S. (1993). "Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model." Annals of Statistics , 21: 520-533.
  • Chan, K. S., and H. Tong (1986). "On estimating thresholds in autoregressive models." Journal of Time Series Analysis , 7: 179-194.
  • Chan, K. S. and H. Tong (1990). "On likelihood ratio tests for threshold autoregression." Journal of the Royal Statistical Society, Series B , 52: 469-476.
  • Davies, R. B. (1977). "Hypothesis testing when a nuisance parameter is present only under the alternative." Biometrika , 64: 247-254.
  • Davies, R. B. (1987). "Hypothesis testing when a nuisance parameter is present only under the alternative." Biometrika , 74: 33-43.
  • Dümbgen, L. (1991). "The asymptotic behavior of some nonparametric change point estimators." The Annals of Statistics , 19: 1471-1495.
  • Granger, C. W. J., and T. Teräsvirta (1993). Modelling Nonlinear Economic Relationships . New York: Oxford University Press.
  • Hansen, B. E. (1996a). "Inference when a nuisance parameter is not identified under the null hypothesis." Econometrica , 64: 413-430.
  • Hansen, B. E. (1996b). "Sample splitting and threshold estimation." Working paper 319. Chestnut Hill, Massachusetts: Boston College.
  • Luukkonen, R., P. Saikkonen, and T. Teräsvirta (1988). "Testing linearity against smooth transition autoregressive models." Biometrika, 75: 491-499.
  • Picard, D. (1985). "Testing and estimating change-points in time series." Advances in Applied Probability , 17: 841-867.
  • Teräsvirta, T., D. Tjostheim, and C. W. J. Granger (1994). "Aspects of modelling nonlinear time series." In R. F. Engle and D. L. McFadden (eds.), Handbook of Econometrics , vol. IV. Amsterdam: Elsevier Science, pp. 2917-2957.
  • Tong, H. (1983). Threshold Models in Non-linear Time Series Analysis: Lecture Notes in Statistics 21 . Berlin: Springer-Verlag.
  • Tong, H. (1990). Non-Linear Time Series: A Dynamical System Approach . New York: Oxford University Press.
  • White, H. (1980). "A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity." Econometrica , 48: 817-838.
  • Yao, Y.-C. (1987). "Approximating the distribution of the ML estimate of the change-point in a sequence of independent r.v.'s." Annals of Statistics , 3: 1321-1328.